Zobrazit minimální záznam

dc.contributor.authorMenšík, Marek
dc.contributor.authorDuží, Marie
dc.contributor.authorAlberti, Adam
dc.contributor.authorPatschka, Vojtěch
dc.contributor.authorPajr, Miroslav
dc.date.accessioned2019-11-25T09:46:42Z
dc.date.available2019-11-25T09:46:42Z
dc.date.issued2019
dc.identifier.citationComputación y Sistemas. 2019, vol. 23, issue 3, p. 943-958.cs
dc.identifier.issn1405-5546
dc.identifier.issn2007-9737
dc.identifier.urihttp://hdl.handle.net/10084/138976
dc.descriptionDOI nefunkční (25.11.2019)
dc.description.abstractIn this paper we deal with machine learning methods and algorithms applied in learning simple concepts by their refining or explication. The method of refining a simple concept of an object O consists in discovering a molecular concept that defines the same or a very similar object to the object O. Typically, such a molecular concept is a professional definition of the object, for instance a biological definition according to taxonomy, or legal definition of roles, acts, etc. Our background theory is Transparent Intensional Logic (TIL). In TIL concepts are explicated as abstract procedures encoded by natural language terms. These procedures are defined as six kinds of TIL constructions. First, we briefly introduce the method of learning with a supervisor that is applied in our case. Then we describe the algorithm 'Framework' together with heuristic methods applied by it. The heuristics is based on a plausible supply of positive and negative (near-miss) examples by which learner's hypotheses are refined and adjusted. Given a positive example, the learner refines the hypothesis learnt so far, while a near-miss example triggers specialization. Our heuristic methods deal with the way refinement is applied, which includes also its special cases generalization and specialization.cs
dc.language.isoencs
dc.publisherIPNcs
dc.relation.ispartofseriesComputación y Sistemascs
dc.relation.urihttps://doi.org/10.13053/CyS-23-3-3242cs
dc.subjectmachine learningcs
dc.subjectsupervisorcs
dc.subjecttransparent intensional logiccs
dc.subjectTILcs
dc.subjectrefinementcs
dc.subjectgeneralizationcs
dc.subjectspecializationcs
dc.subjecthypothesiscs
dc.subjectheuristicscs
dc.titleRefining concepts by machine learningcs
dc.typearticlecs
dc.identifier.doi10.13053/CyS-23-3-3242
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.issue3cs
dc.description.lastpage958cs
dc.description.firstpage943cs
dc.identifier.wos000489136900031


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam