Show simple item record

dc.contributor.authorGrushko, Stefan
dc.contributor.authorVysocký, Aleš
dc.contributor.authorJha, Vyomkesh Kumar
dc.contributor.authorPastor, Robert
dc.contributor.authorPrada, Erik
dc.contributor.authorMiková, Ľubica
dc.contributor.authorBobovský, Zdenko
dc.date.accessioned2021-01-21T10:34:18Z
dc.date.available2021-01-21T10:34:18Z
dc.date.issued2020
dc.identifier.citationMM Science Journal. 2020, vol. 2020, p. 4154-4163.cs
dc.identifier.issn1803-1269
dc.identifier.issn1805-0476
dc.identifier.urihttp://hdl.handle.net/10084/142582
dc.description.abstractThis paper performs a benchmark of main parameters of perception and planning available in MoveIt! motion planning framework in order to identify parameters the most affecting the overall performance of the system. The initial benchmark is performed on a virtual simulation of UR3 robot workspace with a single obstacle. The performance is measured by means of successful runs, path planning and execution durations. The results of the benchmark are processed and, based on the results, three parameters are chosen to be optimized using Particle Swarm Optimization. The optimization of the parameters is performed for the same motion planning problem as presented in the first benchmark. In order to test the performance of the system with optimized parameters, four more benchmarks are performed using the simulated and real robot workspace. The results of the benchmarks indicate improvements in most of the measured indicators.cs
dc.language.isoencs
dc.publisherMM Sciencecs
dc.relation.ispartofseriesMM Science Journalcs
dc.relation.urihttp://doi.org/10.17973/MMSJ.2020_11_2020064cs
dc.subjectmotion planningcs
dc.subjectperceptioncs
dc.subjectMoveItcs
dc.subjectbenchmark testingcs
dc.subjectmanipulatorscs
dc.subjecttuningcs
dc.titleTuning perception and motion planning parameters for Moveit! frameworkcs
dc.typearticlecs
dc.identifier.doi10.17973/MMSJ.2020_11_2020064
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume2020cs
dc.description.lastpage4163cs
dc.description.firstpage4154cs
dc.identifier.wos000590384500019


Files in this item

This item appears in the following Collection(s)

Show simple item record