Zobrazit minimální záznam

dc.contributor.authorVeigend, Petr
dc.contributor.authorNečasová, Gabriela
dc.contributor.authorŠátek, Václav
dc.date.accessioned2021-02-22T10:34:34Z
dc.date.available2021-02-22T10:34:34Z
dc.date.issued2020
dc.identifier.citationOpen Computer Science. 2020, vol. 11, issue 1, p. 60-69.cs
dc.identifier.issn2299-1093
dc.identifier.urihttp://hdl.handle.net/10084/142866
dc.description.abstractThis article deals with a high order integration method based on the Taylor series. The paper shows many positive properties of this method on a set of technical initial value problems. These problems can be transformed into the autonomous systems of ordinary differential equations for both linear and nonlinear problems. The MATLAB implementation of the method is compared with state-of-the-art MATLAB solvers.cs
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofseriesOpen Computer Sciencecs
dc.relation.urihttp://doi.org/10.1515/comp-2020-0163cs
dc.rights© 2021 P. Veigend et al., published by De Gruyter.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectordinary differential equationscs
dc.subjectinitial value problemscs
dc.subjectautonomous systemscs
dc.subjectTaylor seriescs
dc.subjectMTSMcs
dc.subjectMATLABcs
dc.titleTaylor series based numerical integration methodcs
dc.typearticlecs
dc.identifier.doi10.1515/comp-2020-0163
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue1cs
dc.description.lastpage69cs
dc.description.firstpage60cs
dc.identifier.wos000608692900001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 P. Veigend et al., published by De Gruyter.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 P. Veigend et al., published by De Gruyter.