dc.contributor.author | Veigend, Petr | |
dc.contributor.author | Nečasová, Gabriela | |
dc.contributor.author | Šátek, Václav | |
dc.date.accessioned | 2021-02-22T10:34:34Z | |
dc.date.available | 2021-02-22T10:34:34Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Open Computer Science. 2020, vol. 11, issue 1, p. 60-69. | cs |
dc.identifier.issn | 2299-1093 | |
dc.identifier.uri | http://hdl.handle.net/10084/142866 | |
dc.description.abstract | This article deals with a high order integration method based on the Taylor series. The paper shows many positive properties of this method on a set of technical initial value problems. These problems can be transformed into the autonomous systems of ordinary differential equations for both linear and nonlinear problems. The MATLAB implementation of the method is compared with state-of-the-art MATLAB solvers. | cs |
dc.language.iso | en | cs |
dc.publisher | De Gruyter | cs |
dc.relation.ispartofseries | Open Computer Science | cs |
dc.relation.uri | http://doi.org/10.1515/comp-2020-0163 | cs |
dc.rights | © 2021 P. Veigend et al., published by De Gruyter. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | ordinary differential equations | cs |
dc.subject | initial value problems | cs |
dc.subject | autonomous systems | cs |
dc.subject | Taylor series | cs |
dc.subject | MTSM | cs |
dc.subject | MATLAB | cs |
dc.title | Taylor series based numerical integration method | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1515/comp-2020-0163 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 11 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 69 | cs |
dc.description.firstpage | 60 | cs |
dc.identifier.wos | 000608692900001 | |