Zobrazit minimální záznam

dc.contributor.authorKubesa, Michael
dc.contributor.authorRaiman, Tom
dc.date.accessioned2021-05-12T08:41:52Z
dc.date.available2021-05-12T08:41:52Z
dc.date.issued2020
dc.identifier.citationAKCE International Journal of Graphs and Combinatorics. 2020, vol. 17, issue 3, p. 924-934.cs
dc.identifier.issn0972-8600
dc.identifier.issn2543-3474
dc.identifier.urihttp://hdl.handle.net/10084/143065
dc.description.abstractA tadpole (also a canoe paddle or lollipop) is a graph that arises from a cycle and a path by gluing a terminal vertex of the path to an arbitrary vertex of the cycle. In this article, we show that all tadpoles factorize the complete graph K2n+1 if n is odd. We use methods similar to those used for isomorphic factorizations of complete graphs K2n into spanning trees. In Section 4 of this article, we show that our methods do not work for isomorphic factorizations of K2n+1 into tadpoles if n is even.cs
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofseriesAKCE International Journal of Graphs and Combinatoricscs
dc.relation.urihttp://doi.org/10.1016/j.akcej.2020.02.004cs
dc.rights© 2020 The Author(s). Published with license by Taylor & Francis Group, LLCcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfactorizationcs
dc.subjectcomplete graphscs
dc.subjectunicyclic graphscs
dc.subjecttadpolescs
dc.titleFactorizations of complete graphs into tadpolescs
dc.typearticlecs
dc.identifier.doi10.1016/j.akcej.2020.02.004
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume17cs
dc.description.issue3cs
dc.description.lastpage934cs
dc.description.firstpage924cs
dc.identifier.wos000617199800038


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2020 The Author(s). Published with license by Taylor & Francis Group, LLC