dc.contributor.author | Kubesa, Michael | |
dc.contributor.author | Raiman, Tom | |
dc.date.accessioned | 2021-05-12T08:41:52Z | |
dc.date.available | 2021-05-12T08:41:52Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | AKCE International Journal of Graphs and Combinatorics. 2020, vol. 17, issue 3, p. 924-934. | cs |
dc.identifier.issn | 0972-8600 | |
dc.identifier.issn | 2543-3474 | |
dc.identifier.uri | http://hdl.handle.net/10084/143065 | |
dc.description.abstract | A tadpole (also a canoe paddle or lollipop) is a graph that arises from a cycle and a path by gluing a terminal vertex of the path to an arbitrary vertex of the cycle. In this article, we show that all tadpoles factorize the complete graph K2n+1 if n is odd. We use methods similar to those used for isomorphic factorizations of complete graphs K2n into spanning trees. In Section 4 of this article, we show that our methods do not work for isomorphic factorizations of K2n+1 into tadpoles if n is even. | cs |
dc.language.iso | en | cs |
dc.publisher | Taylor & Francis | cs |
dc.relation.ispartofseries | AKCE International Journal of Graphs and Combinatorics | cs |
dc.relation.uri | http://doi.org/10.1016/j.akcej.2020.02.004 | cs |
dc.rights | © 2020 The Author(s). Published with license by Taylor & Francis Group, LLC | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | factorization | cs |
dc.subject | complete graphs | cs |
dc.subject | unicyclic graphs | cs |
dc.subject | tadpoles | cs |
dc.title | Factorizations of complete graphs into tadpoles | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.akcej.2020.02.004 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 17 | cs |
dc.description.issue | 3 | cs |
dc.description.lastpage | 934 | cs |
dc.description.firstpage | 924 | cs |
dc.identifier.wos | 000617199800038 | |