dc.contributor.advisor | Novák, Petr | |
dc.contributor.author | Pastor, Robert | |
dc.date.accessioned | 2021-11-08T12:14:06Z | |
dc.date.available | 2021-11-08T12:14:06Z | |
dc.date.issued | 2021 | |
dc.identifier.other | OSD002 | |
dc.identifier.uri | http://hdl.handle.net/10084/145402 | |
dc.description.abstract | Disertační práce se zabývá optimalizacemi kinematiky robotů pro předem známý účel, využívá přitom poznatky z oboru evoluční robotiky a strojového učení. Evoluční robotika má za cíl vytvářet roboty a jejich kontroléry metodami inspirovanými evolucí organismů v přírodě, jako jsou optimalizace genetickými algoritmy a řízení neuronovými sítěmi. Strojové učení se zabývá algoritmy a technikami pracujícími s matematickým modelem, který procesem učení schopný řešit často špatně definovatelné úlohy. Evoluční robotika zkoumá metody automatického návrhu robotů již od 80. let 20. století, avšak výzkum většinou neopustí laboratoře a v praxi se téměř nepoužívá. To může být způsobeno výpočetní složitostí používaných metod, kdy optimalizace kinematiky robotu probíhají příliš dlouho a s nejistým výsledkem pro praktické použití. Poznatky z oboru strojového učení by mohly tento proces návrhu robotu zrychlit a pomoct přiblížit se praktickému strojařskému nástroji.
V práci jsou pro syntézu kinematiky robotu použity převážně úlohy, ve kterých se optimalizuje kinematika manipulátoru pro trajektorii definovanou cílovými body. V úvodních kapitolách je analyzován současný stav řešené problematiky. Dále je uveden souhrn dvou publikovaných metod, ve kterých jsem prováděl syntézu kinematiky robotu a poznatky vyplývající z tohoto výzkumu. Následuje definice metody optimalizace manipulátoru pro danou úlohu pomocí genetického algoritmu v prostředí MATLAB. Je zde kladen důraz na správnou definici optimalizovaného vektoru neboli genotypu a na definici účelové funkce, podle které je manipulátor ověřován. Výsledky metody jsou prezentovány na několika příkladových úlohách. Dále je uveden návrh ověření výsledků na reálném modulárním manipulátoru. Následuje popis metody, která používá neuronové sítě pro rychlý návrh kinematiky robotu. | cs |
dc.description.abstract | The dissertation deals with optimizations of robot kinematics for a task known in advance, using knowledge from the field of evolutionary robotics and machine learning. Evolutionary robotics aims to create robots and their controllers using methods inspired by the evolution of natural organisms, such as optimization by genetic algorithms and controlling the robots with neural network. Machine learning deals with algorithms and techniques that work with a mathematical model, which through a learning process is able to solve problems that are often difficult to define. Evolutionary robotics has been experimenting with methods for the automatic design of robots since the 1980s, but the research usually does not leave laboratories and is hardly used in practice. This may be due to the computational complexity of the methods used, where the optimization of the robot's kinematics takes too long and with uncertain results for practical use. Knowledge from the field of machine learning could speed up this robot design process and help to get closer to a practical engineering tool.
The focus of the thesis is on a synthesis of a robot manipulator, optimized for a specific task. The tasks are defined as trajectories composed of target points. The opening chapters analyze the current state of the art. A summary of two published methods follows. The summary includes methods that synthesize robot kinematics, and the findings of this research are described. Following chapters define a method for a task-based synthesis of robot manipulators using a genetic algorithm in the MATLAB environment. Emphasis is placed on the correct definition of the optimized vector i.e. genotype and on the definition of the objective function, according to which the manipulator is evaluated. The results of the method are presented on several example tasks. A proposal to verify the results on a real modular manipulator is described next. Lastly, a method that uses neural networks for rapid robot kinematics design is presented. | en |
dc.format | 96 listů : ilustrace + 1 CD-R | |
dc.format.extent | 7239408 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | cs | |
dc.publisher | Vysoká škola báňská – Technická univerzita Ostrava | cs |
dc.subject | Syntéza kinematiky robotů | cs |
dc.subject | evoluční robotika | cs |
dc.subject | strojové učení | cs |
dc.subject | optimalizace robotu | cs |
dc.subject | genetický algoritmus | cs |
dc.subject | Robot kinematics synthesis | en |
dc.subject | evolutionary robotics | en |
dc.subject | machine learning | en |
dc.subject | robot optimization | en |
dc.subject | genetic algorithm | en |
dc.title | Aplikování strojového učení při návrhu kinematických struktur robotů | cs |
dc.title.alternative | Machine learning applications in robot kinematics design | en |
dc.type | Disertační práce | cs |
dc.identifier.signature | 202300017 | |
dc.identifier.location | ÚK/Sklad diplomových prací | |
dc.contributor.referee | Mostýn, Vladimír | |
dc.contributor.referee | Čermák, Petr | |
dc.contributor.referee | Černohorský, Josef | |
dc.date.accepted | 2021-08-31 | |
dc.thesis.degree-name | Ph.D. | |
dc.thesis.degree-level | Doktorský studijní program | cs |
dc.thesis.degree-grantor | Vysoká škola báňská – Technická univerzita Ostrava. Fakulta strojní | cs |
dc.description.department | 354 - Katedra robotiky | cs |
dc.thesis.degree-program | Strojní inženýrství | cs |
dc.thesis.degree-branch | Robotika | cs |
dc.description.result | vyhověl | cs |
dc.identifier.sender | S2723 | |
dc.identifier.thesis | PAS0067_FS_P2346_2301V013_2021 | |
dc.rights.access | openAccess | |