Zobrazit minimální záznam

dc.contributor.authorQu, Jiale
dc.contributor.authorFeng, Xiang
dc.contributor.authorWang, Tianshuai
dc.contributor.authorLi, Ziqi
dc.contributor.authorLin, Chao
dc.contributor.authorLiu, Xiaopeng
dc.contributor.authorLegut, Dominik
dc.contributor.authorZhang, Qianfan
dc.date.accessioned2021-11-10T13:48:33Z
dc.date.available2021-11-10T13:48:33Z
dc.date.issued2021
dc.identifier.citationMaterials Advances. 2021.cs
dc.identifier.issn2633-5409
dc.identifier.urihttp://hdl.handle.net/10084/145669
dc.description.abstractThe high percentage of N-2 in the air can provide an abundant nitrogen source for the ammonia industry. However, the nitrogen fixation process still faces great challenges due to the stable nitrogen-nitrogen triple bonds. Recently, single-atom catalysts (SACs) have arguably become the most promising frontier in the synthetic ammonia industry due to their high activity, selectivity and stability. In particular, metal-free catalysis has attracted great attention due to its low-cost and environmentally friendly features. Herein, we investigate a series of nitrogen-reduction reaction (NRR) electrocatalysts as graphene nanoribbons (GNRs) embedded with 16 kinds of non-transition metal single-atom catalysts (non-TMSACs) using density functional theory (DFT) computations. The stability of this system is first confirmed by AIMD simulations and formation energies. Among all the candidates, Si anchored on the GNR system achieves a limiting potential as low as -0.45 V and the binding energy for NNH also serves as a good descriptor for the onset potential. The electronic structure reveals that this design satisfies an "acceptance-donation" interaction scenario, which is also confirmed by the crystal orbital Hamilton population (COHP) and the spatial charge distribution. This study not only proposes an effective catalysis approach for the NRR, but also emphasizes the origin of electronic structures, which may provide guidance for future NRR catalyst designs.cs
dc.language.isoencs
dc.publisherRoyal Society of Chemistrycs
dc.relation.ispartofseriesMaterials Advancescs
dc.relation.urihttps://doi.org/10.1039/d1ma00518acs
dc.rights© 2021 The Author(s). Published by the Royal Society of Chemistrycs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/cs
dc.titleDesign of non-transition-metal-doped nanoribbon catalysis to achieve efficient nitrogen fixationcs
dc.typearticlecs
dc.identifier.doi10.1039/d1ma00518a
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000700908200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 The Author(s). Published by the Royal Society of Chemistry
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 The Author(s). Published by the Royal Society of Chemistry