Energy-momentum complex in higher order curvature-based local gravity
dc.contributor.author | Capozziello, Salvatore | |
dc.contributor.author | Capriolo, Maurizio | |
dc.contributor.author | Lambiase, Gaetano | |
dc.date.accessioned | 2022-11-07T11:27:21Z | |
dc.date.available | 2022-11-07T11:27:21Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Particles. 2022, vol. 5, issue 3, p. 298-330. | cs |
dc.identifier.issn | 2571-712X | |
dc.identifier.uri | http://hdl.handle.net/10084/148861 | |
dc.description.abstract | An unambiguous definition of gravitational energy remains one of the unresolved issues of physics today. This problem is related to the non-localization of gravitational energy density. In General Relativity, there have been many proposals for defining the gravitational energy density, notably those proposed by Einstein, Tolman, Landau and Lifshitz, Papapetrou, Moller, and Weinberg. In this review, we firstly explored the energy-momentum complex in an nth order gravitational Lagrangian L=L (g(mu nu),g(mu nu),i(1),g(mu nu),i(1)i(2),g(mu nu),i(1)i(2)i(3),. . .,g(mu nu),i(1)i(2)i(3) . . .i(n)) and then in a gravitational Lagrangian as Lg=((R) over bar +a(0)R(2)+ Sigma(p)(k=1)a(k)R square R-k)root-g. Its gravitational part was obtained by invariance of gravitational action under infinitesimal rigid translations using Noether's theorem. We also showed that this tensor, in general, is not a covariant object but only an affine object, that is, a pseudo-tensor. Therefore, the pseudo-tensor tau(eta)(alpha) becomes the one introduced by Einstein if we limit ourselves to General Relativity and its extended corrections have been explicitly indicated. The same method was used to derive the energy-momentum complex in f(R) gravity both in Palatini and metric approaches. Moreover, in the weak field approximation the pseudo-tensor tau(eta)(alpha) to lowest order in the metric perturbation h was calculated. As a practical application, the power per unit solid angle omega emitted by a localized source carried by a gravitational wave in a direction (x) over cap for a fixed wave number k under a suitable gauge was obtained, through the average value of the pseudo-tensor over a suitable spacetime domain and the local conservation of the pseudo-tensor. As a cosmological application, in a flat Friedmann-Lemaitre-Robertson-Walker spacetime, the gravitational and matter energy density in f(R) gravity both in Palatini and metric formalism was proposed. The gravitational energy-momentum pseudo-tensor could be a useful tool to investigate further modes of gravitational radiation beyond two standard modes required by General Relativity and to deal with non-local theories of gravity involving -k terms. | cs |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartofseries | Particles | cs |
dc.relation.uri | https://doi.org/10.3390/particles5030026 | cs |
dc.rights | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | energy–momentum complex | cs |
dc.subject | pseudo-tensor | cs |
dc.subject | gravitational energy | cs |
dc.title | Energy-momentum complex in higher order curvature-based local gravity | cs |
dc.type | article | cs |
dc.identifier.doi | 10.3390/particles5030026 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 5 | cs |
dc.description.issue | 3 | cs |
dc.description.lastpage | 330 | cs |
dc.description.firstpage | 298 | cs |
dc.identifier.wos | 000856909700001 |
Files in this item
This item appears in the following Collection(s)
-
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost Katedry matematiky / Publications of Department of Mathematics (230) [36]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry matematiky (230) v časopisech registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.