Zobrazit minimální záznam

dc.contributor.advisorSnášel, Václav
dc.contributor.authorPham, Nguyen Huy Phuong
dc.date.accessioned2022-12-19T12:04:58Z
dc.date.available2022-12-19T12:04:58Z
dc.date.issued2022
dc.identifier.otherOSD002
dc.identifier.urihttp://hdl.handle.net/10084/149024
dc.description.abstractIn recent years, the dizzying explosion of data and information results from social networks with millions to billions of users, such as Facebook, YouTube, Twitter, and LinkedIn. Users can use online social networks (OSNs) to quickly trade information, communicate with other users, and keep their information up-to-date. The challenge of spreading information on social networks that arises in practice requires effective information management solutions, such as disseminating useful information, maximizing the influence of information transmission, and preventing disinformation, rumors, and viruses from being disseminated. Motivated by the above issues, we investigate the problem of information diffusion on OSNs. We study this problem based on two models, Independent Cascade (IC) and Linear Threshold (LT), and classical Influence Maximization (IM) in online social networks. In addition, we investigate various aspects of IM problems, such as budget variations, topics of interest, multiple competitors, and others. Moreover, we also investigate and apply the theory of combinatorial optimization problems to solve one of the current concerns in social networks, maximizing the influence on the groups and topics in social networks. In general, the main goals of the Ph.D thesis proposal are as follows. 1. We investigate the Multi-Threshold problem for IM, which is a variant of the IM problem with threshold constraints. We propose an efficient algorithm that IM for multiple thresholds in the social network. In particular, we develop a novel algorithmic framework that can use the solution to a smaller threshold to find that of larger ones. 2. We study the Group Influence Maximization problem and introduce an efficient group influence maximization algorithm with more advantages than each node’s influence in networks, using a novel sampling technique to estimate the epsilon group function. We also devised an approximation algorithm to estimate multiple candidate solutions with theoretical guarantee. 3. We investigate an approach for Influence Maximization problem with k-topic under constraints in social network. More specifically, we also study a streaming algorithm that combines an optimization algorithm to improve the approximation algorithm and theoretical guarantee in terms of solution quality and running time.en
dc.description.abstractV posledních letech je závratná exploze dat a informací výsledkem sociálních sítí s miliony až miliardami uživatelů, jako jsou Facebook, YouTube, Twitter a LinkedIn. Uživatelé mohou využívat online sociální sítě (OSNs) k rychlému obchodování s informacemi, komunikaci s ostatními uživateli a udržování jejich informací v aktuálním stavu. Výzva šíření informací na sociálních sítích, která se v praxi objevuje, vyžaduje efektivní řešení správy informací, jako je šíření užitečných informací, maximalizace vlivu přenosu informací a zabránění šíření dezinformací, fám a virů. Motivováni výše uvedenými problémy zkoumáme problém šíření informací na OSN. Tento problém studujeme na základě dvou modelů, Independent Cascade (IC) a Linear Threshold (LT) a klasické Influence Maximization (IM) v online sociálních sítích. Kromě toho zkoumáme různé aspekty problémů s rychlým zasíláním zpráv, jako jsou změny rozpočtu, témata zájmu, více konkurentů a další. Kromě toho také zkoumáme a aplikujeme teorii kombinatorických optimalizačních problémů k vyřešení jednoho ze současných problémů v sociálních sítích, maximalizujeme vliv na skupiny a témata v sociálních sítích. Obecně lze říci, že hlavní cíle Ph.D. návrh diplomové práce je následující. 1. Zkoumáme problém Multi-Threshold pro IM, což je varianta problému IM s prahovými omezeními. Navrhujeme účinný algoritmus, který IM pro více prahů v sociální síti. Zejména vyvíjíme nový algoritmický rámec, který může použít řešení pro menší práh k nalezení prahu většího. 2. Studujeme problém maximalizace vlivu skupiny a zavádíme účinný algoritmus maxima- lizace vlivu skupiny s více výhodami, než je vliv každého uzlu v sítích, pomocí nové vzorkovací techniky k odhadu funkce skupiny epsilon. Navrhujeme také aproximační algoritmus pro odhad více kandidátních řešení s teoretickou zárukou. 3. Zkoumáme přístup pro maximalizaci vlivu s k-téma pod omezeními v rozsáhlé síti. Konkrétněji budeme studovat novou metriku, která kombinuje optimalizační algoritmus pro zlepšení aproximačního algoritmu z hlediska kvality řešení a doby běhu na základě kliky a komunity v komplexních sítích.cs
dc.format110 stran : ilustrace
dc.format.extent3142462 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherVysoká škola báňská – Technická univerzita Ostravacs
dc.subjectOnline Social Networksen
dc.subjectInfluence Maximizationen
dc.subjectViral Marketingen
dc.subjectApproximation Algorithmsen
dc.subjectInformation Diffusionen
dc.subjectOnline sociální sítěcs
dc.subjectmaximalizace vlivucs
dc.subjectvirální marketingcs
dc.subjectaproximační algoritmycs
dc.subjectšíření informacícs
dc.titleEfficient Algorithms for Social Influence Problems with Large Networksen
dc.title.alternativeEfektivní algoritmy pro problémy se sociálním vlivem u velkých sítícs
dc.typeDisertační prácecs
dc.identifier.signature202300068
dc.identifier.locationÚK/Sklad diplomových prací
dc.contributor.refereeKomínková Oplatková, Zuzana
dc.contributor.refereeVojtáš, Peter
dc.contributor.refereeKudělka, Miloš
dc.date.accepted2022-11-23
dc.thesis.degree-namePh.D.
dc.thesis.degree-levelDoktorský studijní programcs
dc.thesis.degree-grantorVysoká škola báňská – Technická univerzita Ostrava. Fakulta elektrotechniky a informatikycs
dc.description.department460 - Katedra informatikycs
dc.thesis.degree-programInformatika, komunikační technologie a aplikovaná matematikacs
dc.thesis.degree-branchInformatikacs
dc.description.resultvyhovělcs
dc.identifier.senderS2724
dc.identifier.thesisPHA0017_FEI_P1807_1801V001_2022
dc.rights.accessopenAccess


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam