dc.contributor.advisor | Černý, Martin | |
dc.contributor.author | Barvík, Daniel | |
dc.date.accessioned | 2023-11-10T11:46:07Z | |
dc.date.available | 2023-11-10T11:46:07Z | |
dc.date.issued | 2023 | |
dc.identifier.other | OSD002 | |
dc.identifier.uri | http://hdl.handle.net/10084/151501 | |
dc.description.abstract | Hlavním cílem této práce je nalezení nové metodiky pro měření kontinuálního neinvazivního krevního tlaku na základě rychlosti šíření pulzní vlny v krevním řečišti. Práce se opírá o rešerši zabývající se základním modelem pro stanovení kontinuálního neinvazivního krevního tlaku na základě měření zpoždění pulzní vlny a jeho rozšířením. Z informací získaných z rešerše se upravila metodika měření doby zpoždění pulzní vlny / rychlosti šíření pulzní vlny, aby bylo možné docílit přesnějších výsledků a omezit tak lidský faktor, který způsobuje významnou nepřesnost vlivem nedokonalého rozmístění senzorů. Rešerše se rovněž podrobně zabývá modely pro stanovení kontinuálního neinvazivního krevního tlaku a jejich úprav zajištujících zvýšení přesnosti. Mezi úpravy modelů zejména patří vstupní parametry popisující krevní oběh - systémový cévní odpor, elasticita cév, tuhost cév. Práce se taky zabývá úpravami stávajícího modelu krevního řečiště pro bližší přizpůsobení fyzického modelu k reálnému cévnímu systému lidského těla. Mezi tyto úpravy patří i funkce baroreflexu či simulace různé tvrdosti stěny umělých cévních segmentů. Protože se jedná o simulační model krevního řečiště, důležitým krokem je také měření tlakové a objemové pulzní vlny, kde není možné využít konvenční senzory pro fotopletysmografii kvůli absenci částic pohlcující světlo. Na základě experimentálního měření pro různé nastavení modelu krevního řečiště bylo provedeno měření pulzní vlny pomocí tlakových a kapacitních senzorů s následným zpracováním měřených signálů a detekcí příznaků charakterizující pulzní vlnu. Na základě příznaku byly stanoveny predikční regresní modely, které vykazovaly dostatečnou přesnost jejich určení, a tak následovaly dvě metody pro získání parametru o tvrdosti cévní stěny na základě měřitelných parametrů. První metodou byl predikční regresní model, který vykazoval přesnost 74,1 % a druhou metodou byl adaptivní neuro-fuzzy inferenční systém, který vykazoval přesnost 98,7 %. Tyto stanovení rychlosti pulzní vlny bylo ověřeno dalším přímým měřením pulzní vlny a výsledky byly srovnány. Výsledkem disertační práce je určení rychlosti šíření pulzní vlny s využitím pouze jednoho pletysmografického senzoru bez nutnosti měření na dvou různých místech s přesným měřením vzdálenosti a možnosti aplikace v klinické praxi. | cs |
dc.description.abstract | The main objective of this work is to find a new methodology for measuring continuous non-invasive blood pressure based on the pulse wave velocity in the vascular system. The work is based on the literature research of the basic model for the determination of non-invasive continuous blood pressure based on the measurement of pulse transit time. From the information obtained from the review, the methodology of measuring the pulse transit time/pulse wave velocity was modified in order to achieve more accurate results and to reduce the human factor that causes significant inaccuracy due to imperfect sensor placement. The review discusses in detail the models for continuous non-invasive blood pressure estimation and their modifications to ensure increased accuracy. In particular, model modifications include input parameters describing blood circulation - systemic vascular resistance, vascular elasticity, and vascular stiffness. The thesis deals with modifications to the existing physical vascular model to more closely mimic the real vascular system of the human body. These modifications include the baroreflex function or the simulation of different wall hardness of artificial arterial segments. As this is a simulation model of the vascular system, the measurement of pressure and volume pulse wave is also an important step, where it is not possible to use photoplethysmography method due to the absence of light absorbing particles. Based on the experimental measurements for different settings of the vascular model, pulse wave measurements were performed using pressure and capacitive sensors with subsequent processing of the measured signals and detection of the pulse wave features. Predictive regression models were established based on the pulse wave features and showed sufficient accuracy in their determination, followed by two methods for obtaining the parameter on the hardness of the vascular wall based on the measurable parameters. The first method was a predictive regression model, which showed an accuracy of 74.1 %, and the second method was an adaptive neuro-fuzzy inference system, which showed an accuracy of 98.7 %. These pulse wave velocity determinations were verified by further direct pulse wave measurements and the results were compared. The dissertation results in the determination of pulse wave propagation velocity using only one plethysmographic sensor without the need for measurements at two different locations with accurate distance measurements and the possibility of application in clinical practice. | en |
dc.format.extent | 6047674 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | cs | |
dc.publisher | Vysoká škola báňská – Technická univerzita Ostrava | cs |
dc.subject | systémový cévní odpor | cs |
dc.subject | kontinuální neinvazivní krevní tlak | cs |
dc.subject | doba zpoždění pulzní vlny | cs |
dc.subject | rychlost šíření pulzní vlny | cs |
dc.subject | model krevního řečiště | cs |
dc.subject | systemic vascular resistance | en |
dc.subject | continuous noninvasive blood pressure | en |
dc.subject | pulse transit time | en |
dc.subject | pulse wave velocity | en |
dc.subject | physical vascular model | en |
dc.title | Vývoj metodiky kontinuálního neinvazivního měření krevního tlaku | cs |
dc.title.alternative | New methods for continuous non-invasive blood pressure measurement | en |
dc.type | Disertační práce | cs |
dc.contributor.referee | Carrault, Guy | |
dc.contributor.referee | Kolářová, Jana | |
dc.contributor.referee | Nováková, Marie | |
dc.date.accepted | 2023-06-26 | |
dc.thesis.degree-name | Ph.D. | |
dc.thesis.degree-level | Doktorský studijní program | cs |
dc.thesis.degree-grantor | Vysoká škola báňská – Technická univerzita Ostrava. Fakulta elektrotechniky a informatiky | cs |
dc.description.department | 450 - Katedra kybernetiky a biomedicínského inženýrství | cs |
dc.thesis.degree-program | Kybernetika | cs |
dc.description.result | vyhověl | cs |
dc.identifier.sender | S2724 | |
dc.identifier.thesis | BAR0420_FEI_P0714D150001_2023 | |
dc.rights.access | openAccess | |