dc.contributor.author | Šplíchal, Bohumil | |
dc.contributor.author | Lehký, David | |
dc.date.accessioned | 2024-03-27T08:48:10Z | |
dc.date.available | 2024-03-27T08:48:10Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava. Řada stavební. 2023, roč. 23, č. 2, s. 61-66 : il. | cs |
dc.identifier.issn | 1213-1962 | |
dc.identifier.uri | http://hdl.handle.net/10084/152465 | |
dc.description.abstract | Structural health monitoring is extremely
important for sustaining and preserving the service
life of civil structures. Research to identify the dam-
age can detect, locate, quantify and, where appropri-
ate, predict potential structural damage. This paper is
about damage identified by non-destructive vibration-
based experiments, which uses the difference between
modal frequencies and deflection of an initial and dam-
aged structure. The main objective of this paper is to
present a hybrid method for structural damage identi-
fication combining artificial neural network and aimed
multilevel sampling method. The combination of these
approaches yields a more efficient damage identifica-
tion in terms of time and accuracy of damage localiza-
tion and damage extent determination. | cs |
dc.language.iso | en | cs |
dc.publisher | Vysoká škola báňská - Technická univerzita Ostrava | cs |
dc.relation.ispartofseries | Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava. Řada stavební | cs |
dc.relation.uri | http://tces.vsb.cz/Home/ArticleDetail/866 | cs |
dc.rights | © Vysoká škola báňská - Technická univerzita Ostrava | cs |
dc.rights | Attribution-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
dc.subject | damage identification | cs |
dc.subject | artificial neural network | cs |
dc.subject | aimed multilevel sampling | cs |
dc.subject | inverse analysis | cs |
dc.title | Damage Identification Using Artificial Neural Network-Aided Aimed Multilevel Sampling Method | cs |
dc.type | article | cs |
dc.identifier.doi | 10.35181/tces-2023-0017 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |