Show simple item record

dc.contributor.authorŠplíchal, Bohumil
dc.contributor.authorLehký, David
dc.date.accessioned2024-03-27T08:48:10Z
dc.date.available2024-03-27T08:48:10Z
dc.date.issued2023
dc.identifier.citationSborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava. Řada stavební. 2023, roč. 23, č. 2, s. 61-66 : il.cs
dc.identifier.issn1213-1962
dc.identifier.urihttp://hdl.handle.net/10084/152465
dc.description.abstractStructural health monitoring is extremely important for sustaining and preserving the service life of civil structures. Research to identify the dam- age can detect, locate, quantify and, where appropri- ate, predict potential structural damage. This paper is about damage identified by non-destructive vibration- based experiments, which uses the difference between modal frequencies and deflection of an initial and dam- aged structure. The main objective of this paper is to present a hybrid method for structural damage identi- fication combining artificial neural network and aimed multilevel sampling method. The combination of these approaches yields a more efficient damage identifica- tion in terms of time and accuracy of damage localiza- tion and damage extent determination.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesSborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava. Řada stavebnícs
dc.relation.urihttp://tces.vsb.cz/Home/ArticleDetail/866cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostravacs
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectdamage identificationcs
dc.subjectartificial neural networkcs
dc.subjectaimed multilevel samplingcs
dc.subjectinverse analysiscs
dc.titleDamage Identification Using Artificial Neural Network-Aided Aimed Multilevel Sampling Methodcs
dc.typearticlecs
dc.identifier.doi10.35181/tces-2023-0017
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Vysoká škola báňská - Technická univerzita Ostrava
Except where otherwise noted, this item's license is described as © Vysoká škola báňská - Technická univerzita Ostrava