Zobrazit minimální záznam

dc.contributor.authorHliněný, Petr
dc.date.accessioned2006-09-20T12:22:45Z
dc.date.available2006-09-20T12:22:45Z
dc.date.issued2006
dc.identifier.citationJournal of Combinatorial Theory, Series B. 2006, vol. 96, issue 4, p. 455-471.en
dc.identifier.issn0095-8956
dc.identifier.urihttp://hdl.handle.net/10084/56286
dc.description.abstractIt was proved by [M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983) 312–316] that computing the crossing number of a graph is an NP-hard problem. Their reduction, however, used parallel edges and vertices of very high degrees. We prove here that it is NP-hard to determine the crossing number of a simple 3-connected cubic graph. In particular, this implies that the minor-monotone version of the crossing number problem is also NP-hard, which has been open till now.en
dc.language.isoenen
dc.publisherAcademic Pressen
dc.relation.ispartofseriesJournal of Combinatorial Theory, Series Ben
dc.relation.urihttp://dx.doi.org/10.1016/j.jctb.2005.09.009en
dc.subjectcrossing numberen
dc.subjectcubic graphen
dc.subjectNP-completenessen
dc.titleCrossing number is hard for cubic graphsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1016/j.jctb.2005.09.009
dc.identifier.wos000238399000002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam