dc.contributor.author | Hliněný, Petr | |
dc.date.accessioned | 2006-09-20T12:22:45Z | |
dc.date.available | 2006-09-20T12:22:45Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Journal of Combinatorial Theory, Series B. 2006, vol. 96, issue 4, p. 455-471. | en |
dc.identifier.issn | 0095-8956 | |
dc.identifier.uri | http://hdl.handle.net/10084/56286 | |
dc.description.abstract | It was proved by [M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983) 312–316] that computing the crossing number of a graph is an NP-hard problem. Their reduction, however, used parallel edges and vertices of very high degrees. We prove here that it is NP-hard to determine the crossing number of a simple 3-connected cubic graph. In particular, this implies that the minor-monotone version of the crossing number problem is also NP-hard, which has been open till now. | en |
dc.language.iso | en | en |
dc.publisher | Academic Press | en |
dc.relation.ispartofseries | Journal of Combinatorial Theory, Series B | en |
dc.relation.uri | http://dx.doi.org/10.1016/j.jctb.2005.09.009 | en |
dc.subject | crossing number | en |
dc.subject | cubic graph | en |
dc.subject | NP-completeness | en |
dc.title | Crossing number is hard for cubic graphs | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1016/j.jctb.2005.09.009 | |
dc.identifier.wos | 000238399000002 | |