Zobrazit minimální záznam

dc.contributor.authorHliněný, Petr
dc.date.accessioned2006-09-21T11:07:19Z
dc.date.available2006-09-21T11:07:19Z
dc.date.issued2006
dc.identifier.citationJournal of Combinatorial Theory, Series B. 2006, vol. 96, issue 3, p. 325-351.en
dc.identifier.issn0095-8956
dc.identifier.urihttp://hdl.handle.net/10084/56344
dc.description.abstractWe introduce "matroid parse trees" which, using only a limited amount of information at each node, can build up the vector representations of matroids of bounded branch-width over a finite field. We prove that if M is a family of matroids described by a sentence in the monadic second-order logic of matroids, then there is a finite tree automaton accepting exactly those parse trees which build vector representations of the bounded-branch-width representable members of M. Since the cycle matroids of graphs are representable over any field, our result directly extends the so called "M S-2-theorem" for graphs of bounded tree-width by Courcelle, and others. Moreover, applications and relations in areas other than matroid theory can be found, like for rank-width of graphs, or in the coding theory.en
dc.language.isoenen
dc.publisherAcademic Pressen
dc.relation.ispartofseriesJournal of Combinatorial Theory, Series Ben
dc.relation.urihttp://dx.doi.org/10.1016/j.jctb.2005.08.005en
dc.subjectmatroid representationen
dc.subjectbranch-widthen
dc.subjectmonadic second-order logicen
dc.subjecttree automatonen
dc.subjectfixed-parameter complexityen
dc.titleBranch-width, parse trees, and monadic second-order logic for matroidsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1016/j.jctb.2005.08.005
dc.identifier.wos000237476800002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam