dc.contributor.author | Hliněný, Petr | |
dc.date.accessioned | 2006-09-21T11:07:19Z | |
dc.date.available | 2006-09-21T11:07:19Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Journal of Combinatorial Theory, Series B. 2006, vol. 96, issue 3, p. 325-351. | en |
dc.identifier.issn | 0095-8956 | |
dc.identifier.uri | http://hdl.handle.net/10084/56344 | |
dc.description.abstract | We introduce "matroid parse trees" which, using only a limited amount of information at each node, can build up the vector representations of matroids of bounded branch-width over a finite field. We prove that if M is a family of matroids described by a sentence in the monadic second-order logic of matroids, then there is a finite tree automaton accepting exactly those parse trees which build vector representations of the bounded-branch-width representable members of M.
Since the cycle matroids of graphs are representable over any field, our result directly extends the so called "M S-2-theorem" for graphs of bounded tree-width by Courcelle, and others. Moreover, applications and relations in areas other than matroid theory can be found, like for rank-width of graphs, or in the coding theory. | en |
dc.language.iso | en | en |
dc.publisher | Academic Press | en |
dc.relation.ispartofseries | Journal of Combinatorial Theory, Series B | en |
dc.relation.uri | http://dx.doi.org/10.1016/j.jctb.2005.08.005 | en |
dc.subject | matroid representation | en |
dc.subject | branch-width | en |
dc.subject | monadic second-order logic | en |
dc.subject | tree automaton | en |
dc.subject | fixed-parameter complexity | en |
dc.title | Branch-width, parse trees, and monadic second-order logic for matroids | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1016/j.jctb.2005.08.005 | |
dc.identifier.wos | 000237476800002 | |