Zobrazit minimální záznam

dc.contributor.authorJančar, Petr
dc.contributor.authorSrba, Jiří
dc.date.accessioned2006-09-25T09:08:14Z
dc.date.available2006-09-25T09:08:14Z
dc.date.issued2006
dc.identifier.citationFoundations of software science and computation structures : 9th International Conference, FOSSACS 2006, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006. Proceedings. 2006, p. 277-291. Lecture notes in computer science, vol. 3921.en
dc.identifier.isbn978-3-540-33045-5
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10084/56467
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesFoundations of software science and computation structuresen
dc.relation.urihttp://dx.doi.org/10.1007/11690634_19en
dc.subjectpushdown-automata
dc.subjectbisimulation
dc.subjectequivalence
dc.subjectdecidability
dc.titleUndecidability results for bisimilarity on prefix rewrite systemsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enWe answer an open question related to bisimilarity checking on labelled transition systems generated by prefix rewrite rules on words. Stirling (1996, 1998) proved the decidability of bisimilarity for normed pushdown processes. This result was substantially extended by Senizergues (1998, 2005) who showed the decidability for regular (or equational) graphs of finite out-degree (which include unnormed pushdown processes). The question of decidability of bisimilarity for a more general class of so called Type -1 systems (generated by prefix rewrite rules of the form R ->(a) w where R is a regular language) was left open; this was repeatedly indicated by both Stirling and Senizergues. Here we answer the question negatively, i.e., we show undecidability of bisimilarity on Type -1 systems, even in the normed case. We complete the picture by considering classes of systems that use rewrite rules of the form a a W ->(a) R and R-1 ->(a) R-2 and show when they yield low undecidability (Pi(0)(1)-completeness) and when high undecidability (Sigma(1)(1)-completeness), all with and without the assumption of normedness.
dc.identifier.doi10.1007/11690634
dc.identifier.wos000237082000019


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam