dc.contributor.author | Hliněný, Petr | |
dc.date.accessioned | 2006-09-25T13:09:37Z | |
dc.date.available | 2006-09-25T13:09:37Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | SIAM Journal on Computing. 2005, vol. 35, issue 2, p. 259-277. | en |
dc.identifier.issn | 0097-5397 | |
dc.identifier.issn | 1095-7111 | |
dc.identifier.uri | http://hdl.handle.net/10084/56507 | |
dc.description.abstract | Branch-width is a structural parameter very closely related to tree-width, but branch-width has an immediate generalization from graphs to matroids. We present an algorithm that, for a given matroid M of bounded branch-width t which is represented over a finite field, finds a branch decomposition of M of width at most 3t in cubic time. Then we show that the branch-width of M is a uniformly fixed-parameter tractable problem. Other applications include recognition of matroid properties definable in the monadic second-order logic for bounded branch-width, and [S.-I. Oum, Approximating rank-width and clique-width quickly, in Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer Science, Springer-Verlag, Heidelberg, to appear] a cubic time approximation algorithm for graph rank-width and clique-width. (A correction to this article has been appended to the pdf file.) | en |
dc.language.iso | en | en |
dc.publisher | Society for Industrial and Applied Mathematics | en |
dc.relation.ispartofseries | SIAM Journal on Computing | en |
dc.relation.uri | https://doi.org/10.1137/S0097539702418589 | en |
dc.subject | representable matroid | en |
dc.subject | parametrized algorithm | en |
dc.subject | branch-width | en |
dc.subject | rank-width | en |
dc.title | A parametrized algorithm for matroid branch-width | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1137/S0097539702418589 | |
dc.identifier.wos | 000233930200001 | |