Zobrazit minimální záznam

dc.contributor.authorPraus, Petr
dc.date.accessioned2006-09-25T13:33:01Z
dc.date.available2006-09-25T13:33:01Z
dc.date.issued2005
dc.identifier.citationWater SA. 2005, vol. 31, no. 4, p. 417-422.en
dc.identifier.issn0378-4738
dc.identifier.issn1816-7950
dc.identifier.urihttp://hdl.handle.net/10084/56510
dc.language.isoenen
dc.publisherWater Research Commissionen
dc.relation.ispartofseriesWater SAen
dc.relation.urihttp://ajol.info/index.php/wsa/article/view/5132/12781en
dc.subjectwater qualityen
dc.subjectwastewateren
dc.subjectdrinking wateren
dc.subjectprincipal component analysisen
dc.subjectsingular value decompositionen
dc.subjectfactor analysisen
dc.titleWater quality assessment using SVD-based principal component analysis of hydrological dataen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enPrincipal component analysis (PCA) based on singular value decomposition (SVD) of hydrological data was tested for water quality assessment. Using two case studies of waste- and drinking water, PCA via SVD was able to find latent variables which explain 80.8% and 83.7% of the variance, respectively. By means of scatter and loading plots, PCA revealed the relationships among samples and hydrochemical parameters which were also confirmed by factor analysis (FA). In the case of wastewater, these latent variables clearly displayed changes of water composition over time. Drinking water samples were clustered into four groups which were characterised by their typical water composition. On the basis of these results PCA was found to be a suitable technique for water quality assessment.
dc.identifier.wos000233740200001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam