dc.contributor.author | Krupková, Olga | |
dc.contributor.author | Volný, Petr | |
dc.date.accessioned | 2006-09-25T13:57:48Z | |
dc.date.available | 2006-09-25T13:57:48Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | Journal of Physics A: Mathematical and General. 2006, vol. 38, no. 40, p. 8715-8745. | en |
dc.identifier.issn | 0305-4470 | |
dc.identifier.issn | 1361-6447 | |
dc.identifier.uri | http://hdl.handle.net/10084/56515 | |
dc.description.abstract | A generalization of the concept of a system of non-holonomic constraints to fibred manifolds with n-dimensional bases is considered. Motion equations in both Lagrangian and Hamiltonian settings for systems subjected to such constraints are investigated. Regularity conditions for the existence of a non-holonomic Legendre transformation, and the corresponding formulae for Hamiltonian and momenta are found. In particular, Lagrangian constraints and semi-holonomic constraints, and simplifications arising in this case are discussed. | en |
dc.language.iso | en | en |
dc.publisher | Institute of Physics | en |
dc.publisher | IOP Publishing | |
dc.relation.ispartofseries | Journal of Physics A: Mathematical and General | en |
dc.relation.uri | http://dx.doi.org/10.1088/0305-4470/38/40/015 | en |
dc.subject | geometrical framework | en |
dc.subject | constrained systems | en |
dc.subject | mechanics | en |
dc.title | Euler-Lagrange and Hamilton equations for non-holonomic systems in field theory | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1088/0305-4470/38/40/015 | |
dc.identifier.wos | 000233112200017 | |