Zobrazit minimální záznam

dc.contributor.authorGiménez, Omer
dc.contributor.authorHliněný, Petr
dc.contributor.authorNoy, Marc
dc.date.accessioned2006-10-03T07:43:05Z
dc.date.available2006-10-03T07:43:05Z
dc.date.issued2005
dc.identifier.citationGraph-theoretic concepts in computer science : 31st International Workshop, WG 2005, Metz, France, June 23-25, 2005. Revised selected papers. 2005, p. 59-68.en
dc.identifier.isbn978-3-540-31000-6
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10084/56757
dc.description.abstractThe Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time ) for computing the Tutte polynomial on cographs. The algorithm can be extended to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial.en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesGraph-theoretic concepts in computer science : 31st International Workshop, WG 2005, Metz, France, June 23-25, 2005. Revised selected papersen
dc.relation.urihttp://dx.doi.org/10.1007/11604686_6en
dc.subjectTutte polynomialen
dc.subjectcographsen
dc.subjectclique-widthen
dc.subjectsubexponential algorithmen
dc.subjectU polynomialen
dc.titleComputing the Tutte polynomial on graphs of bounded clique-widthen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1007/11604686_6
dc.identifier.wos000234875500006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam