Zobrazit minimální záznam

dc.contributor.authorHliněný, Petr
dc.date.accessioned2006-10-05T14:31:22Z
dc.date.available2006-10-05T14:31:22Z
dc.date.issued2004
dc.identifier.citationMathematical foundations of computer science 2004 : 29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004. Proceedings. 2004, p. 772-782.en
dc.identifier.isbn978-3-540-22823-3
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10084/56867
dc.description.abstractIt was proved by [Garey and Johnson, 1983] that computing the crossing number of a graph is an NP-hard problem. Their reduction, however, used parallel edges and vertices of very high degrees. We prove here that it is NP-hard to determine the crossing number of a simple cubic graph. In particular, this implies that the minor-monotone version of crossing number is also NP-hard, which has been open till now.en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesMathematical foundations of computer science 2004 : 29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004. Proceedingsen
dc.relation.urihttp://dx.doi.org/10.1007/b99679en
dc.subjectcrossing numberen
dc.subjectcubic graphen
dc.subjectNP-completenessen
dc.titleCrossing number is hard for cubic graphsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1007/b99679
dc.identifier.wos000223615400060


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam