dc.contributor.author | Hliněný, Petr | |
dc.date.accessioned | 2006-10-05T14:31:22Z | |
dc.date.available | 2006-10-05T14:31:22Z | |
dc.date.issued | 2004 | |
dc.identifier.citation | Mathematical foundations of computer science 2004 : 29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004. Proceedings. 2004, p. 772-782. | en |
dc.identifier.isbn | 978-3-540-22823-3 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10084/56867 | |
dc.description.abstract | It was proved by [Garey and Johnson, 1983] that computing the crossing number of a graph is an NP-hard problem. Their reduction, however, used parallel edges and vertices of very high degrees. We prove here that it is NP-hard to determine the crossing number of a simple cubic graph. In particular, this implies that the minor-monotone version of crossing number is also NP-hard, which has been open till now. | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.ispartofseries | Mathematical foundations of computer science 2004 : 29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004. Proceedings | en |
dc.relation.uri | http://dx.doi.org/10.1007/b99679 | en |
dc.subject | crossing number | en |
dc.subject | cubic graph | en |
dc.subject | NP-completeness | en |
dc.title | Crossing number is hard for cubic graphs | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1007/b99679 | |
dc.identifier.wos | 000223615400060 | |