dc.contributor.author | Archdeacon, D. | |
dc.contributor.author | Ellis-Monaghan, J. | |
dc.contributor.author | Fisher, D. | |
dc.contributor.author | Fronček, Dalibor | |
dc.contributor.author | Lam, P.C.B. | |
dc.contributor.author | Seager, S. | |
dc.contributor.author | Wei, B. | |
dc.contributor.author | Yuster, R. | |
dc.date.accessioned | 2006-10-11T15:23:35Z | |
dc.date.available | 2006-10-11T15:23:35Z | |
dc.date.issued | 2004 | |
dc.identifier.citation | Journal of Graph Theory. 2004, vol. 46, issue 3, p. 207-210. | en |
dc.identifier.issn | 0364-9024 | |
dc.identifier.issn | 1097-0118 | |
dc.identifier.uri | http://hdl.handle.net/10084/57055 | |
dc.description.abstract | We prove a conjecture of Favaron et al. that every graph of order n and minimum degree at least three has a total dominating set of size at least n/2. We also present several related results about: (1) extentions to graphs of minimum degree two, (2) examining graphs where the bound is tight, and (3) a type of bipartite domination and its relation to transversals in hypergraphs. | en |
dc.language.iso | en | en |
dc.publisher | Wiley | en |
dc.relation.ispartofseries | Journal of Graph Theory | en |
dc.relation.uri | https://doi.org/10.1002/jgt.20000 | en |
dc.subject | total domination | en |
dc.subject | bipartite domination | en |
dc.subject | transversals in hypergraphs | en |
dc.title | Some remarks on domination | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1002/jgt.20000 | |
dc.identifier.wos | 000222120100005 | |