Zobrazit minimální záznam

dc.contributor.authorHliněný, Petr
dc.date.accessioned2006-10-16T10:58:58Z
dc.date.available2006-10-16T10:58:58Z
dc.date.issued2006
dc.identifier.citationMathematical foundations of computer science 2006 : 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006. Proceedings. 2006, p. 505-516.en
dc.identifier.isbn978-3-540-37791-7
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10084/57135
dc.description.abstractIn this paper we look at complexity aspects of the following problem (matroid representability) which seems to play an important role in structural matroid theory: Given a rational matrix representing the matroid M, the question is whether M can be represented also over another specific finite field. We prove this problem is hard, and so is the related problem of minor testing in rational matroids. The results hold even if we restrict to matroids of branch-width three.en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesMathematical foundations of computer science 2006 : 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006. Proceedingsen
dc.relation.urihttp://dx.doi.org/10.1007/11821069_44en
dc.subjectmatroid representabilityen
dc.subjectminoren
dc.subjectfinite fielden
dc.subjectspikeen
dc.subjectswirlen
dc.titleOn matroid representability and minor problemsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1007/11821069_44
dc.identifier.wos000240271700044


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam