dc.contributor.author | Haslinger, Jaroslav | |
dc.contributor.author | Vlach, Oldřich | |
dc.date.accessioned | 2006-11-02T06:26:40Z | |
dc.date.available | 2006-11-02T06:26:40Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Journal of Computational and Applied Mathematics. 2006, vol. 197, issue 2, p. 421-436. | en |
dc.identifier.issn | 0377-0427 | |
dc.identifier.uri | http://hdl.handle.net/10084/57665 | |
dc.language.iso | en | en |
dc.publisher | North-Holland | en |
dc.relation.ispartofseries | Journal of Computational and Applied Mathematics | en |
dc.relation.uri | http://dx.doi.org/10.1016/j.cam.2005.10.036 | en |
dc.subject | Coulomb friction | en |
dc.subject | contact problems | en |
dc.title | Approximation and numerical realization of 2D contact problems with Coulomb friction and a solution-dependent coefficient of friction | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | The paper analyzes discrete contact problems with the Coulomb law of friction which involves a solution-dependent coefficient of friction F. Solutions to these problems are defined as fixed points of an auxiliary mapping. It is shown that there exists at least one solution provided that F is bounded and continuous in R-+(1). Further, conditions guaranteeing uniqueness of the solution are studied. The paper is completed by numerical results of several model examples. | |
dc.identifier.doi | 10.1016/j.cam.2005.10.036 | |
dc.identifier.wos | 000241085400010 | |