Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorGomes Neto, Francisco A. M.
dc.contributor.authorSantos, Sandra A.
dc.date.accessioned2006-11-08T06:54:24Z
dc.date.available2006-11-08T06:54:24Z
dc.date.issued2000
dc.identifier.citationJournal of Computational and Applied Mathematics. 2000, vol. 126, issues 1-2, p. 397-415.en
dc.identifier.issn0377-0427
dc.identifier.urihttp://hdl.handle.net/10084/57905
dc.language.isoenen
dc.publisherNorth-Hollanden
dc.relation.ispartofseriesJournal of Computational and Applied Mathematicsen
dc.relation.urihttp://dx.doi.org/10.1016/S0377-0427(99)00368-4en
dc.subjectdomain decompositionen
dc.subjectnatural coarse subspaceen
dc.subjectvariational inequalitiesen
dc.subjectquadratic programmingen
dc.titleDuality-based domain decomposition with natural coarse-space for variational inequalitiesen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enAn efficient non-overlapping domain decomposition algorithm of Neumann–Neumann type for solving variational inequalities arising from the elliptic boundary value problems with inequality boundary conditions has been presented. The discretized problem is first turned by the duality theory of convex programming into a quadratic programming problem with bound and equality constraints and the latter is further modified by means of orthogonal projectors to the natural coarse space introduced recently by Farhat and Roux. The resulting problem is then solved by an augmented Lagrangian type algorithm with an outer loop for the Lagrange multipliers for the equality constraints and an inner loop for the solution of the bound constrained quadratic programming problems. The projectors are shown to guarantee an optimal rate of convergence of iterative solution of auxiliary linear problems. Reported theoretical results and numerical experiments indicate high numerical and parallel scalability of the algorithm.en
dc.identifier.doi10.1016/S0377-0427(99)00368-4
dc.identifier.wos000166374800024


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam