dc.contributor.author | Haslinger, Jaroslav | |
dc.contributor.author | Jedelský, David | |
dc.contributor.author | Kozubek, Tomáš | |
dc.contributor.author | Tvrdík, Josef | |
dc.date.accessioned | 2006-11-09T09:44:26Z | |
dc.date.available | 2006-11-09T09:44:26Z | |
dc.date.issued | 2000 | |
dc.identifier.citation | Journal of Global Optimization. 2000, vol. 16, no. 2, p. 109-196. | en |
dc.identifier.issn | 0925-5001 | |
dc.identifier.issn | 1573-2916 | |
dc.identifier.uri | http://hdl.handle.net/10084/57998 | |
dc.language.iso | en | en |
dc.relation.ispartofseries | Journal of Global Optimization | en |
dc.relation.uri | http://dx.doi.org/10.1023/A:1008380715489 | en |
dc.subject | genetic algorithm | en |
dc.subject | control random search method | en |
dc.subject | shape optimization | en |
dc.subject | fictitious domain approaches | en |
dc.title | Genetic and random search methods in optimal shape design problems | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | We describe the application of two global optimization methods, namely of genetic and random search type algorithms in shape optimization. When the so-called fictitious domain approaches are used for the numerical realization of state problems, the resulting minimized function is non-differentiable and stair-wise, in general. Such complicated behaviour excludes the use of classical local methods. Specific modifications of the above-mentioned global methods for our class of problems are described. Numerical results of several model examples computed by different variants of genetic and random search type algorithms are discussed. | en |
dc.identifier.doi | 10.1023/A:1008380715489 | |
dc.identifier.wos | 000088031900001 | |