Zobrazit minimální záznam

dc.contributor.authorHaslinger, Jaroslav
dc.contributor.authorJedelský, David
dc.contributor.authorKozubek, Tomáš
dc.contributor.authorTvrdík, Josef
dc.date.accessioned2006-11-09T09:44:26Z
dc.date.available2006-11-09T09:44:26Z
dc.date.issued2000
dc.identifier.citationJournal of Global Optimization. 2000, vol. 16, no. 2, p. 109-196.en
dc.identifier.issn0925-5001
dc.identifier.issn1573-2916
dc.identifier.urihttp://hdl.handle.net/10084/57998
dc.language.isoenen
dc.relation.ispartofseriesJournal of Global Optimizationen
dc.relation.urihttp://dx.doi.org/10.1023/A:1008380715489en
dc.subjectgenetic algorithmen
dc.subjectcontrol random search methoden
dc.subjectshape optimizationen
dc.subjectfictitious domain approachesen
dc.titleGenetic and random search methods in optimal shape design problemsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enWe describe the application of two global optimization methods, namely of genetic and random search type algorithms in shape optimization. When the so-called fictitious domain approaches are used for the numerical realization of state problems, the resulting minimized function is non-differentiable and stair-wise, in general. Such complicated behaviour excludes the use of classical local methods. Specific modifications of the above-mentioned global methods for our class of problems are described. Numerical results of several model examples computed by different variants of genetic and random search type algorithms are discussed.en
dc.identifier.doi10.1023/A:1008380715489
dc.identifier.wos000088031900001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam