Zobrazit minimální záznam

dc.contributor.authorFronček, Dalibor
dc.contributor.authorMeszka, Mariusz
dc.date.accessioned2006-11-10T05:42:52Z
dc.date.available2006-11-10T05:42:52Z
dc.date.issued2000
dc.identifier.citationJournal of Combinatorial Designs. 2000, vol. 8, issue 2, p. 83-99.en
dc.identifier.issn1063-8539
dc.identifier.urihttp://hdl.handle.net/10084/58024
dc.language.isoenen
dc.publisherWileyen
dc.relation.ispartofseriesJournal of Combinatorial Designsen
dc.relation.urihttps://doi.org/10.1002/(SICI)1520-6610(2000)8:2<83::AID-JCD2>3.0.CO;2-Ven
dc.subjecttransversal designsen
dc.subjectcomplete multipartite graphsen
dc.subjectisomorphic factorsen
dc.subjectself complementary factorsen
dc.subjectdiameteren
dc.titleHalving transversal designsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enA factor H of a transversal design TD(k,n) = (V,, ), where V is the set of points, the set of groups of size n and the set of blocks of size k, is a triple (V,, ) such that is a subset of . A halving of a TD (k, n) is a pair of factors Hi = (V, , i), i = 1,2 such that 1 2 = , 1 2 = and H1 is isomorphic to H2. A path of length q is a sequence x0, x1,,xq of points such that for each i = 1, 2,, q the points xi-1 and xi belong to a block Bi and no point appears more than once. The distance between points x and y in a factor H is the length of the shortest path from x to y. The diameter of a connected factor H is the maximum of the set of distances among all pairs of points of H. We prove that a TD (3, n) is halvable into isomorphic factors of diameter d only if d = 2,3,4, or and we completely determine for which values of n there exists such a halvable TD (3, n). We also show that if any group divisible design with block size at least 3 is decomposed into two factors with the same finite diameter d, then d 4.en
dc.identifier.doi10.1002/(SICI)1520-6610(2000)8:2<83::AID-JCD2>3.0.CO;2-V
dc.identifier.wos000085540000002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam