dc.contributor.author | Rachůnek, Jiří | |
dc.contributor.author | Šalounová, Dana | |
dc.date.accessioned | 2007-01-09T09:28:02Z | |
dc.date.available | 2007-01-09T09:28:02Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Fuzzy Sets and Systems. 2006, vol. 157, issue 24, p. 3159-3168. | en |
dc.identifier.issn | 0165-0114 | |
dc.identifier.uri | http://hdl.handle.net/10084/59581 | |
dc.language.iso | en | en |
dc.publisher | North-Holland | en |
dc.relation.ispartofseries | Fuzzy Sets and Systems | en |
dc.relation.uri | http://dx.doi.org/10.1016/j.fss.2006.08.007 | en |
dc.subject | residuated ℓ-monoid | en |
dc.subject | basic fuzzy logic | en |
dc.subject | BL-algebra | en |
dc.subject | fuzzy truth value | en |
dc.title | Truth values on generalizations of some commutative fuzzy structures | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | Hájek introduced the logic BLvt enriching the logic BL by a unary connective vt which is a formalization of Zadeh's fuzzy truth value “very true”. BLvt-algebras, i.e. BL-algebras with unary operations, called vt-operators, which are among others subdiagonal, are an algebraic counterpart of BLvt. Residuated lattice ordered monoids (Rℓ-monoids) are common generalizations of BL-algebras and Heyting algebras. In the paper, we study algebraic properties of Rℓvt-algebras (and consequently of BLvt-algebras) and of those that are enriched by derived superdiagonal operators which in the case of MV-algebras are the duals to vt-operators. | en |
dc.identifier.doi | 10.1016/j.fss.2006.08.007 | |
dc.identifier.wos | 000242664800003 | |