Zobrazit minimální záznam

dc.contributor.authorRachůnek, Jiří
dc.contributor.authorŠalounová, Dana
dc.date.accessioned2007-01-09T09:28:02Z
dc.date.available2007-01-09T09:28:02Z
dc.date.issued2006
dc.identifier.citationFuzzy Sets and Systems. 2006, vol. 157, issue 24, p. 3159-3168.en
dc.identifier.issn0165-0114
dc.identifier.urihttp://hdl.handle.net/10084/59581
dc.language.isoenen
dc.publisherNorth-Hollanden
dc.relation.ispartofseriesFuzzy Sets and Systemsen
dc.relation.urihttp://dx.doi.org/10.1016/j.fss.2006.08.007en
dc.subjectresiduated ℓ-monoiden
dc.subjectbasic fuzzy logicen
dc.subjectBL-algebraen
dc.subjectfuzzy truth valueen
dc.titleTruth values on generalizations of some commutative fuzzy structuresen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enHájek introduced the logic BLvt enriching the logic BL by a unary connective vt which is a formalization of Zadeh's fuzzy truth value “very true”. BLvt-algebras, i.e. BL-algebras with unary operations, called vt-operators, which are among others subdiagonal, are an algebraic counterpart of BLvt. Residuated lattice ordered monoids (Rℓ-monoids) are common generalizations of BL-algebras and Heyting algebras. In the paper, we study algebraic properties of Rℓvt-algebras (and consequently of BLvt-algebras) and of those that are enriched by derived superdiagonal operators which in the case of MV-algebras are the duals to vt-operators.en
dc.identifier.doi10.1016/j.fss.2006.08.007
dc.identifier.wos000242664800003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam