dc.contributor.author | Berrone, S. | |
dc.contributor.author | Kozubek, Tomáš | |
dc.date.accessioned | 2007-03-08T11:44:49Z | |
dc.date.available | 2007-03-08T11:44:49Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | SIAM Journal on Scientific Computing. 2006, vol. 28, issue 6, p. 2114-2138. | en |
dc.identifier.issn | 1064-8275 | |
dc.identifier.issn | 1095-7197 | |
dc.identifier.uri | http://hdl.handle.net/10084/59850 | |
dc.language.iso | en | en |
dc.publisher | Society for Industrial and Applied Mathematics | en |
dc.relation.ispartofseries | SIAM Journal on Scientific Computing | en |
dc.relation.uri | https://doi.org/10.1137/04062014X | en |
dc.subject | adaptive wavelet and finite element methods | en |
dc.subject | elliptic operator equations | en |
dc.subject | rates of convergence | en |
dc.title | An adaptive WEM algorithm for solving elliptic boundary value problems in fairly general domains | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | In this paper, we introduce a simple adaptive wavelet element algorithm similar to the Cohen–Dahmen–DeVore algorithm [A. Cohen, W. Dahmen, and R. DeVore, Math. Comp., 70 (2001), pp. 27–75]. The main difference is that we do not assume knowledge of the many constants appearing therein. The algorithm is easy to implement and applicable to a large class of problems in fairly general domains. The efficiency is illustrated by several two-dimensional numerical examples and compared with an adaptive finite element method. | en |
dc.identifier.doi | 10.1137/04062014X | |
dc.identifier.wos | 000243968200006 | |