dc.contributor.author | Baniotopoulos, C. C. | |
dc.contributor.author | Haslinger, Jaroslav | |
dc.contributor.author | Morávková, Zuzana | |
dc.date.accessioned | 2007-04-17T11:06:06Z | |
dc.date.available | 2007-04-17T11:06:06Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | Computational Mechanics. 2007, vol. 40, no. 1, p. 157-165. | en |
dc.identifier.uri | http://hdl.handle.net/10084/59895 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.ispartofseries | Computational Mechanics | en |
dc.relation.uri | https://doi.org/10.1007/s00466-006-0092-3 | en |
dc.subject | contact problems | en |
dc.subject | nonmonotone friction | en |
dc.subject | constrained hemivariational inequality | en |
dc.subject | bundle Newton method | en |
dc.title | Contact problems with nonmonotone friction: discretization and numerical realization | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | The paper deals with the formulation, approximation and numerical realization of a constrained hemivariational inequality describing the behavior of two elastic bodies in mutual contact, taking into account a nonmonotone friction law on a contact surface. The original hemivariational inequality is transformed into a problem of finding substationary points of a nonconvex, locally Lipschitz continuous function representing the discrete total potential energy functional. The resulting discrete problem is solved by using a nonsmooth variant of the Newton method. Numerical results of a model example are shown. | en |
dc.identifier.doi | 10.1007/s00466-006-0092-3 | |
dc.identifier.wos | 000245293500013 | |