dc.contributor.author | Postava, Kamil | |
dc.contributor.author | Yamaguchi, Tomuo | |
dc.date.accessioned | 2007-06-29T13:13:21Z | |
dc.date.available | 2007-06-29T13:13:21Z | |
dc.date.issued | 2001 | |
dc.identifier.citation | Journal of Applied Physics. 2001, vol. 89, issue 4, p. 2189-2193. | en |
dc.identifier.issn | 0021-8979 | |
dc.identifier.issn | 1089-7550 | |
dc.identifier.uri | http://hdl.handle.net/10084/60824 | |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics | en |
dc.relation.ispartofseries | Journal of Applied Physics | en |
dc.relation.uri | http://dx.doi.org/10.1063/1.1344214 | en |
dc.title | Optical functions of low-k materials for interlayer dielectrics | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | The optical functions of low dielectric constant (low-k) materials have been determined using a high-precision four-zone null spectroscopic ellipsometer in the spectral range from 1.5 to 5.4 eV (230–840 nm wavelength region). The ellipsometric data were fitted simultaneously with near-normal incidence reflectivity spectra (ranging from 0.5 to 6.5 eV). A general method of simultaneous treatment of ellipsometric and reflectivity data is demonstrated on representative materials used in the semiconductor industry for interlayer dielectrics: (1) SiLK—organic dielectric resin from the Dow Chemical Company, (2) Nanoglass—nanoporous silica from the Honeywell Electronic Materials Company, and (3) tetra-ethyl-ortho-silicate (TEOS) (SiO2)—the standard dielectric material. The low-k materials (SiLK and Nanoglass) were prepared by a standard spin-coating process, while the SiO2 layer was prepared by thermal decomposition from TEOS onto single-crystal silicon wafers. | en |
dc.identifier.doi | 10.1063/1.1344214 | |
dc.identifier.wos | 000166688300030 | |