Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorHorák, David
dc.date.accessioned2007-07-03T06:06:27Z
dc.date.available2007-07-03T06:06:27Z
dc.date.issued2007
dc.identifier.citationSIAM Journal on Numerical Analysis. 2007, vol. 45, issue 2, p. 500-513.en
dc.identifier.issn0036-1429
dc.identifier.issn1095-7170
dc.identifier.urihttp://hdl.handle.net/10084/60835
dc.language.isoenen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.relation.ispartofseriesSIAM Journal on Numerical Analysisen
dc.relation.urihttps://doi.org/10.1137/050639454en
dc.subjectdomain decompositionen
dc.subjectvariational inequalityen
dc.subjectscalabilityen
dc.subjectparallel algorithmsen
dc.subjectFETIen
dc.titleTheoretically supported scalable FETI for numerical solution of variational inequalitiesen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enThe FETI method with a natural coarse grid is combined with recently proposed optimal algorithms for the solution of bound and/or equality constrained quadratic programming problems in order to develop a scalable solver for elliptic boundary variational inequalities such as those describing equilibrium of a system of bodies in mutual contact. A discretized model problem is first reduced by the duality theory of convex optimization to the quadratic programming problem with bound and equality constraints. The latter is then modified by means of orthogonal projectors to the natural coarse grid introduced by Farhat, Mandel, and Roux [Comput. Methods Appl. Mech. Engrg., 115 (1994), pp. 365–385]. Finally, the classical results on linear scalability for linear problems are extended to boundary variational inequalities. The results are validated by numerical experiments. The experiments also confirm that the algorithm enjoys the same parallel scalability as its linear counterpart.en
dc.identifier.doi10.1137/050639454
dc.identifier.wos000246294900004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam