Disconnected self-complementary factors of almost complete tripartite graphs
dc.contributor.author | Fronček, Dalibor | |
dc.date.accessioned | 2007-08-09T13:18:40Z | |
dc.date.available | 2007-08-09T13:18:40Z | |
dc.date.issued | 1999 | |
dc.identifier.citation | Utilitas Mathematica. 1999, vol. 56, p. 107–116. | en |
dc.identifier.issn | 0315-3681 | |
dc.identifier.uri | http://hdl.handle.net/10084/61668 | |
dc.language.iso | en | en |
dc.publisher | Utilitas Mathematica | en |
dc.relation.ispartofseries | Utilitas Mathematica | en |
dc.title | Disconnected self-complementary factors of almost complete tripartite graphs | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | A complete tripartite graph without one edge, (K) over tilde(m1,m2,m3), is called an almost complete tripartite graph. A graph (K) over tilde(m1,m2,m3) that can be decomposed into two isomorphic factors is called halvable. It is proved that an almost complete tripartite graph is halvable into disconnected factors without isolated vertices if an only if it is a graph (K) over tilde(1,2m+1,2p) and the "missing" (i.e., deleted) edge has the endvertices in the odd parts. It is also shown that the factors have always two components: one component is isomorphic to a star K-1,K-p, and the other to a graph K-1,K-2m,K-p - K-1,K-m. For factors with isolated vertices it is proved that they have just one non-trivial component and all isolated vertices belong to the same part. | en |
dc.identifier.wos | 000084308000008 |
Soubory tohoto záznamu
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.