Zobrazit minimální záznam

dc.contributor.authorFronček, Dalibor
dc.date.accessioned2007-08-09T13:18:40Z
dc.date.available2007-08-09T13:18:40Z
dc.date.issued1999
dc.identifier.citationUtilitas Mathematica. 1999, vol. 56, p. 107–116.en
dc.identifier.issn0315-3681
dc.identifier.urihttp://hdl.handle.net/10084/61668
dc.language.isoenen
dc.publisherUtilitas Mathematicaen
dc.relation.ispartofseriesUtilitas Mathematicaen
dc.titleDisconnected self-complementary factors of almost complete tripartite graphsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enA complete tripartite graph without one edge, (K) over tilde(m1,m2,m3), is called an almost complete tripartite graph. A graph (K) over tilde(m1,m2,m3) that can be decomposed into two isomorphic factors is called halvable. It is proved that an almost complete tripartite graph is halvable into disconnected factors without isolated vertices if an only if it is a graph (K) over tilde(1,2m+1,2p) and the "missing" (i.e., deleted) edge has the endvertices in the odd parts. It is also shown that the factors have always two components: one component is isomorphic to a star K-1,K-p, and the other to a graph K-1,K-2m,K-p - K-1,K-m. For factors with isolated vertices it is proved that they have just one non-trivial component and all isolated vertices belong to the same part.en
dc.identifier.wos000084308000008


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam