Show simple item record

dc.contributor.authorBělohlávek, Radim
dc.contributor.authorChajda, Ivan
dc.date.accessioned2007-09-03T08:11:37Z
dc.date.available2007-09-03T08:11:37Z
dc.date.issued1997
dc.identifier.citationAlgebra Universalis. 1997, vol. 37, no. 2, p. 235-242.en
dc.identifier.issn0002-5240
dc.identifier.issn1420-8911
dc.identifier.urihttp://hdl.handle.net/10084/62430
dc.language.isoenen
dc.publisherBirkhäuseren
dc.relation.ispartofseriesAlgebra Universalisen
dc.relation.urihttp://dx.doi.org/10.1007/s000120050015en
dc.titleA polynomial characterization of congruence classesen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enLet V be a regular and permutable variety and A =(A, F) is an element of V. Let empty set not equal C subset of or equal to A. We get an explicit list L of polynomials such that C is a congruence class of some theta is an element of Con A iff C is closed under all terms of L. Moreover, if V is a finite similarity type, L is finite. If also A is an element of V is finite, all polynomials of L can be considered to be unary. We get a formula for the estimation of card L. The problem of deciding whether C is a congruence class of a finite algebra is in NP but for C is an element of V it is in P.en
dc.identifier.doi10.1007/s000120050015
dc.identifier.wosA1997WZ65400006


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record