dc.contributor.author | Bělohlávek, Radim | |
dc.contributor.author | Chajda, Ivan | |
dc.date.accessioned | 2007-09-03T08:11:37Z | |
dc.date.available | 2007-09-03T08:11:37Z | |
dc.date.issued | 1997 | |
dc.identifier.citation | Algebra Universalis. 1997, vol. 37, no. 2, p. 235-242. | en |
dc.identifier.issn | 0002-5240 | |
dc.identifier.issn | 1420-8911 | |
dc.identifier.uri | http://hdl.handle.net/10084/62430 | |
dc.language.iso | en | en |
dc.publisher | Birkhäuser | en |
dc.relation.ispartofseries | Algebra Universalis | en |
dc.relation.uri | http://dx.doi.org/10.1007/s000120050015 | en |
dc.title | A polynomial characterization of congruence classes | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | Let V be a regular and permutable variety and A =(A, F) is an element of V. Let empty set not equal C subset of or equal to A. We get an explicit list L of polynomials such that C is a congruence class of some theta is an element of Con A iff C is closed under all terms of L. Moreover, if V is a finite similarity type, L is finite. If also A is an element of V is finite, all polynomials of L can be considered to be unary. We get a formula for the estimation of card L. The problem of deciding whether C is a congruence class of a finite algebra is in NP but for C is an element of V it is in P. | en |
dc.identifier.doi | 10.1007/s000120050015 | |
dc.identifier.wos | A1997WZ65400006 | |