Show simple item record

dc.contributor.authorFronček, Dalibor
dc.date.accessioned2007-09-03T08:45:22Z
dc.date.available2007-09-03T08:45:22Z
dc.date.issued1997
dc.identifier.citationDiscrete Mathematics. 1997, vol. 167-168, p. 317-327.en
dc.identifier.issn0012-365X
dc.identifier.urihttp://hdl.handle.net/10084/62431
dc.language.isoenen
dc.publisherNorth-Hollanden
dc.relation.ispartofseriesDiscrete Mathematicsen
dc.relation.urihttps://doi.org/10.1016/S0012-365X(96)00237-3en
dc.subjectgraph decompositionsen
dc.subjectisomorphic factorsen
dc.subjectself-complementary graphsen
dc.titleAlmost self-complementary factors of complete bipartite graphsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enA complete bipartite graph without one edge, <(K)over tilde (n,m)>, is called almost complete bipartite graph. A graph <(K)over tilde (2n+1,2m+1)> that can be decomposed into two isomorphic factors with a given diameter d is called d-isodecomposable. We prove that <(K)over tilde (2n+1,2m+1)> is d-isodecomposable only if d = 3, 4, 5, 6 or ∞ and completely determine all d-isodecomposable almost complete bipartite graphs for each diameter. For d = ∞ we, moreover, present all classes of possible disconnected factors.en
dc.identifier.doi10.1016/S0012-365X(96)00237-3
dc.identifier.wosA1997WW79600026


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record