dc.contributor.author | Fronček, Dalibor | |
dc.date.accessioned | 2007-09-03T08:45:22Z | |
dc.date.available | 2007-09-03T08:45:22Z | |
dc.date.issued | 1997 | |
dc.identifier.citation | Discrete Mathematics. 1997, vol. 167-168, p. 317-327. | en |
dc.identifier.issn | 0012-365X | |
dc.identifier.uri | http://hdl.handle.net/10084/62431 | |
dc.language.iso | en | en |
dc.publisher | North-Holland | en |
dc.relation.ispartofseries | Discrete Mathematics | en |
dc.relation.uri | https://doi.org/10.1016/S0012-365X(96)00237-3 | en |
dc.subject | graph decompositions | en |
dc.subject | isomorphic factors | en |
dc.subject | self-complementary graphs | en |
dc.title | Almost self-complementary factors of complete bipartite graphs | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | A complete bipartite graph without one edge, <(K)over tilde (n,m)>, is called almost complete bipartite graph. A graph <(K)over tilde (2n+1,2m+1)> that can be decomposed into two isomorphic factors with a given diameter d is called d-isodecomposable. We prove that <(K)over tilde (2n+1,2m+1)> is d-isodecomposable only if d = 3, 4, 5, 6 or ∞ and completely determine all d-isodecomposable almost complete bipartite graphs for each diameter. For d = ∞ we, moreover, present all classes of possible disconnected factors. | en |
dc.identifier.doi | 10.1016/S0012-365X(96)00237-3 | |
dc.identifier.wos | A1997WW79600026 | |