dc.contributor.author | Hliněný, Petr | |
dc.date.accessioned | 2007-10-22T12:26:08Z | |
dc.date.available | 2007-10-22T12:26:08Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | Theory of Computing Systems. 2007, vol. 41, no. 3, p. 551-562. | en |
dc.identifier.issn | 1432-4350 | |
dc.identifier.issn | 1433-0490 | |
dc.identifier.uri | http://hdl.handle.net/10084/63812 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.ispartofseries | Theory of Computing Systems | en |
dc.relation.uri | http://dx.doi.org/10.1007/s00224-007-1307-5 | |
dc.title | Some hard problems on matroid spikes | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.description.abstract-en | Spikes form an interesting class of 3-connected matroids of branch-width 3. We show that some computational problems are hard on spikes with given matrix representations over infinite fields. Namely, the question whether a given spike is the free spike is co-NP-hard (though the property itself is definable in monadic second-order logic); and the task to compute the Tutte polynomial of a spike is #P-hard (even though that can be solved efficiently on all matroids of bounded branch-width which are represented over a finite field). | en |
dc.identifier.doi | 10.1007/s00224-007-1307-5 | |
dc.identifier.wos | 000249654500012 | |