Zobrazit minimální záznam

dc.contributor.authorHliněný, Petr
dc.date.accessioned2007-10-22T12:26:08Z
dc.date.available2007-10-22T12:26:08Z
dc.date.issued2007
dc.identifier.citationTheory of Computing Systems. 2007, vol. 41, no. 3, p. 551-562.en
dc.identifier.issn1432-4350
dc.identifier.issn1433-0490
dc.identifier.urihttp://hdl.handle.net/10084/63812
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesTheory of Computing Systemsen
dc.relation.urihttp://dx.doi.org/10.1007/s00224-007-1307-5
dc.titleSome hard problems on matroid spikesen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enSpikes form an interesting class of 3-connected matroids of branch-width 3. We show that some computational problems are hard on spikes with given matrix representations over infinite fields. Namely, the question whether a given spike is the free spike is co-NP-hard (though the property itself is definable in monadic second-order logic); and the task to compute the Tutte polynomial of a spike is #P-hard (even though that can be solved efficiently on all matroids of bounded branch-width which are represented over a finite field).en
dc.identifier.doi10.1007/s00224-007-1307-5
dc.identifier.wos000249654500012


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam