Zobrazit minimální záznam

dc.contributor.authorLukáš, Dalibor
dc.contributor.authorDostál, Zdeněk
dc.date.accessioned2007-12-17T13:03:06Z
dc.date.available2007-12-17T13:03:06Z
dc.date.issued2007
dc.identifier.citationNumerical Linear Algebra with Applications. 2007, vol. 14, issues 9, p. 741-750.en
dc.identifier.issn1070-5325
dc.identifier.issn1099-1506
dc.identifier.urihttp://hdl.handle.net/10084/64506
dc.language.isoenen
dc.publisherWileyen
dc.relation.ispartofseriesNumerical Linear Algebra with Applicationsen
dc.relation.urihttp://dx.doi.org/10.1002/nla.552en
dc.subjectmultigriden
dc.subjectaugmented Lagrangiansen
dc.subjectStokes problemen
dc.titleOptimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problemen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enWe propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi-monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two-dimensional Stokes problem.en
dc.identifier.doi10.1002/nla.552
dc.identifier.wos000250976900004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam