Show simple item record

dc.contributor.authorRachůnková, Irena
dc.contributor.authorStryja, Jakub
dc.date.accessioned2008-05-14T10:29:23Z
dc.date.available2008-05-14T10:29:23Z
dc.date.issued2007
dc.identifier.citationGeorgian Mathematical Journal. 2007, vol. 14, no. 2, p. 325-340.en
dc.identifier.issn1072-947X
dc.identifier.urihttp://hdl.handle.net/10084/65066
dc.description.abstractThis paper investigates the singular Dirichlet problem -u'' = f(t,u,u')\,,\quad u(0)=0\,,\quad u(T)=0\,, where f satisfies the Carath\'eodory conditions on the set (0,T) \times \mathbb{R}_0^2 and \mathbb{R}_0 = \mathbb{R} \setminus \{ 0\}. The function f(t,x,y) can have time singularities at t=0 and t=T and space singularities at x=0 and y=0. The existence principle for the above problem is given and its application is presented here. The paper provides conditions which guarantee the existence of a solution which is positive on (0,T) and which has the absolutely continuous first derivative on [0,T].en
dc.language.isoenen
dc.publisherHeldermannen
dc.relation.ispartofseriesGeorgian Mathematical Journalen
dc.relation.urihttps://doi.org/10.1515/GMJ.2007.325en
dc.subjectsingular Dirichlet problemen
dc.subjectexistenceen
dc.subjectsmooth positive solutionen
dc.subjecttime and space singularitiesen
dc.titleSingular Dirichlet boundary value problem for second order ODEen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1515/GMJ.2007.325
dc.identifier.wos000255028300010


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record