dc.contributor.author | Rachůnková, Irena | |
dc.contributor.author | Stryja, Jakub | |
dc.date.accessioned | 2008-05-14T10:29:23Z | |
dc.date.available | 2008-05-14T10:29:23Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | Georgian Mathematical Journal. 2007, vol. 14, no. 2, p. 325-340. | en |
dc.identifier.issn | 1072-947X | |
dc.identifier.uri | http://hdl.handle.net/10084/65066 | |
dc.description.abstract | This paper investigates the singular Dirichlet problem -u'' = f(t,u,u')\,,\quad u(0)=0\,,\quad u(T)=0\,, where f satisfies the Carath\'eodory conditions on the set (0,T) \times \mathbb{R}_0^2 and \mathbb{R}_0 = \mathbb{R} \setminus \{ 0\}. The function f(t,x,y) can have time singularities at t=0 and t=T and space singularities at x=0 and y=0. The existence principle for the above problem is given and its application is presented here. The paper provides conditions which guarantee the existence of a solution which is positive on (0,T) and which has the absolutely continuous first derivative on [0,T]. | en |
dc.language.iso | en | en |
dc.publisher | Heldermann | en |
dc.relation.ispartofseries | Georgian Mathematical Journal | en |
dc.relation.uri | https://doi.org/10.1515/GMJ.2007.325 | en |
dc.subject | singular Dirichlet problem | en |
dc.subject | existence | en |
dc.subject | smooth positive solution | en |
dc.subject | time and space singularities | en |
dc.title | Singular Dirichlet boundary value problem for second order ODE | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1515/GMJ.2007.325 | |
dc.identifier.wos | 000255028300010 | |