Zobrazit minimální záznam

dc.contributor.authorPraus, Petr
dc.date.accessioned2008-06-09T09:48:16Z
dc.date.available2008-06-09T09:48:16Z
dc.date.issued2007
dc.identifier.citationActa Montanistica Slovaca. 2007, roč. 12, č. 2, s. 150-158.en
dc.identifier.issn1335-1788
dc.identifier.urihttp://hdl.handle.net/10084/65141
dc.description.abstractA data set, obtained for the sake of drinking water quality monitoring, was analysed by multivariate methods. Principal component analysis (PCA) reduced the data dimensionality from 18 original physico-chemical and microbiological parameters determined in drinking water samples to 6 principal components explaining about 83 % of the data variability. These 6 components represented inorganic salts, nitrate/pH, iron, chlorine, nitrite/ammonium traces, and heterotrophic bacteria. Using the PCA scatter plot and the Ward's clustering of the samples characterized by the first and second principal components, three clusters were revealed. These clusters sorted drinking water samples according to their origin - ground and surface water. The PCA results were confirmed by the factor analysis and hierarchical clustering of the original data.en
dc.language.isoenen
dc.publisherTechnická univerzita Košiceen
dc.relation.ispartofseriesActa Montanistica Slovacaen
dc.relation.urihttp://actamont.tuke.sk/pdf/2007/n2/11praus.pdfen
dc.subjectwater qualityen
dc.subjectdrinking wateren
dc.subjectprincipal component analysisen
dc.subjectmultivariate methodsen
dc.subjectdata miningen
dc.titleUrban water quality evaluation using multivariate analysisen
dc.title.alternativeHodnotenie kvality mestskej vody použitím multivariacnej analyzyen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.wos000255022800011


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam