Zobrazit minimální záznam

dc.contributor.authorDuží, Marie
dc.date.accessioned2013-01-21T12:13:34Z
dc.date.available2013-01-21T12:13:34Z
dc.date.issued2012
dc.identifier.citationOrganon F. 2012, roč. 19, č. 1, suplement, s. 20-45.cs
dc.identifier.issn1335-0668
dc.identifier.urihttp://hdl.handle.net/10084/96059
dc.description.abstractIn this paper I describe an extensional logic of hyperintensions, viz. Tichý's Transparent Intensional Logic (TIL). TIL preserves transparency and compositionality in all kinds of context, and validates quantifying into all contexts, including intensional and hyperintensional ones. The received view is that an intensional (let alone hyperintensional) context is one that fails to validate transparency, compositionality, and quantifying-in; and vice versa, if a context fails to validate these extensional principles, then the context is 'opaque', that is non-extensional. We steer clear of this circle by defining extensionality for hyperintensions presenting functions, functions (including possible-world intensions), and functional values. The main features of our logic are that the senses of expressions remain invariant across contexts and that our ramified type theory enables quantification over any logical objects of any order into any context. The syntax of TIL is the typed lambda calculus; its semantics is based on a procedural redefinition of, inter alia, functional abstraction and application. The only two non-standard features of our logic are a hyperintension called Trivialization and a fourplace substitution function (called Sub) defined over hyperintensions. Using this logical machinery I propose rules of existential generalization and substitution of identicals into the three kinds of context.
dc.format.extent723003 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherSlovenská akadémia vied. Filozofický ústavcs
dc.relation.ispartofseriesOrganon Fcs
dc.rights© 2012 The Author. Journal compilation © 2012 Institute of Philosophy SAS
dc.subjectextensional rules for three kinds of context
dc.subjectExtensional/intensional/hyperintensional context
dc.subjectQuantifying-in
dc.subjectramified type theory
dc.subjecttransparency
dc.subjectTransparent Intensional Logic
dc.titleTowards an extensional calculus of hyperintensionscs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume19cs
dc.description.issue1cs
dc.description.lastpage45cs
dc.description.firstpage20cs
dc.identifier.wos000311655800003


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam