Zobrazit minimální záznam

dc.contributor.authorMartinovič, Jan
dc.contributor.authorSlaninová, Kateřina
dc.contributor.authorVojáček, Lukáš
dc.contributor.authorDráždilová, Pavla
dc.contributor.authorDvorský, Jiří
dc.contributor.authorVondrák, Ivo
dc.date.accessioned2013-07-29T08:41:30Z
dc.date.available2013-07-29T08:41:30Z
dc.date.issued2013
dc.identifier.citationNeural Network World. 2013, vol. 23, issue 2, p. 131-147.cs
dc.identifier.issn1210-0552
dc.identifier.urihttp://hdl.handle.net/10084/100618
dc.description.abstractWith increasing opportunities for analyzing large data sources, we have noticed a lack of effective processing in datamining tasks working with large sparse datasets of high dimensions. This work focuses on this issue and on effective clustering using models of artificial intelligence. The authors of this article propose an effective clustering algorithm to exploit the features of neural networks, and especially Self Organizing Maps (SOM), for the reduction of data dimensionality. The issue of computational complexity is resolved by using a parallelization of the standard SOM algorithm. The authors have focused on the acceleration of the presented algorithm using a version suitable for data collections with a certain level of sparsity. Effective acceleration is achieved by improving the winning neuron finding phase and the weight actualization phase. The output presented here demonstrates sufficient acceleration of the standard SOM algorithm while preserving the appropriate accuracy.cs
dc.language.isoencs
dc.publisherAkademie věd České republiky, Ústav informatikycs
dc.relation.ispartofseriesNeural Network Worldcs
dc.subjectneural networkscs
dc.subjectSOMcs
dc.subjectparallel computingcs
dc.subjecthigh dimension datasetscs
dc.subjectlarge sparse datasetscs
dc.titleEffective clustering algorithm for high-dimensional sparse data based on SOMcs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.issue2cs
dc.description.lastpage147cs
dc.description.firstpage131cs
dc.identifier.wos000320146300006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam