Zobrazit minimální záznam

dc.contributor.authorBouaziz, Souhir
dc.contributor.authorDhahri, Habib
dc.contributor.authorAlimi, Adel M.
dc.contributor.authorAbraham, Ajith
dc.date.accessioned2013-08-16T11:17:16Z
dc.date.available2013-08-16T11:17:16Z
dc.date.issued2013
dc.identifier.citationNeurocomputing. 2013, vol. 117, p. 107-117.cs
dc.identifier.issn0925-2312
dc.identifier.urihttp://hdl.handle.net/10084/100637
dc.description.abstractIn this paper, a tree-based encoding method is introduced to represent the Beta basis function neural network. The proposed model called Flexible Beta Basis Function Neural Tree (FBBFNT) can be created and optimized based on the predefined Beta operator sets. A hybrid learning algorithm is used to evolving FBBFNT Model: the structure is developed using the Extended Genetic Programming (EGP) and the Beta parameters and connected weights are optimized by the Opposite-based Particle Swarm Optimization algorithm (OPSO). The performance of the proposed method is evaluated for benchmark problems drawn from control system and time series prediction area and is compared with those of related methods.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNeurocomputingcs
dc.relation.urihttp://dx.doi.org/10.1016/j.neucom.2013.01.024cs
dc.subjectFlexible Beta Basis Function Neural Tree Modelcs
dc.subjectExtended genetic programmingcs
dc.subjectOpposite-based particle swarm optimization algorithmcs
dc.subjectTime-series forecastingcs
dc.subjectControl systemcs
dc.titleA hybrid learning algorithm for evolving Flexible Beta Basis Function Neural Tree Modelcs
dc.typearticlecs
dc.identifier.doi10.1016/j.neucom.2013.01.024
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume117cs
dc.description.lastpage117cs
dc.description.firstpage107cs
dc.identifier.wos000321408200013


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam