Zobrazit minimální záznam

dc.contributor.authorGurný, Martin
dc.contributor.authorOrtobelli, Sergio
dc.contributor.authorGiacometti, Rosella
dc.date.accessioned2013-09-27T12:03:08Z
dc.date.available2013-09-27T12:03:08Z
dc.date.issued2013
dc.identifier.citationJournal of applied mathematics. 2013, art. ID 138272.cs
dc.identifier.issn1110-757X
dc.identifier.urihttp://hdl.handle.net/10084/100692
dc.description.abstractWe discuss structural models based on Merton's framework. First, we observe that the classical assumptions of the Merton model are generally rejected. Secondly, we implement a structural credit risk model based on stable non-Gaussian processes as a representative of subordinated models in order to overcome some drawbacks of the Merton one. Finally, following the KMV-Merton estimation methodology, we propose an empirical comparison between the results obtained from the classical KMV-Merton model and the stable Paretian one. In particular, we suggest alternative parameter estimation for subordinated processes, and we optimize the performance for the stable Paretian model.cs
dc.format.extent1710286 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherHindawics
dc.relation.ispartofseriesJournal of Applied Mathematicscs
dc.relation.urihttp://dx.doi.org/10.1155/2013/138272cs
dc.rightsCopyright © 2013 Martin Gurny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.cs
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/cs
dc.titleStructural credit risk models with subordinated processescs
dc.typearticlecs
dc.identifier.doi10.1155/2013/138272
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.firstpageart. no. 138272cs
dc.identifier.wos000323966700001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2013 Martin Gurny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2013 Martin Gurny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.