Zobrazit minimální záznam

dc.contributor.authorPrílepok, Michal
dc.contributor.authorBerek, Petr
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2013-11-13T12:39:40Z
dc.date.available2013-11-13T12:39:40Z
dc.date.issued2013
dc.identifier.citationCybernetics and Systems. 2013, vol. 44, issue 6-7, p. 533-549.cs
dc.identifier.issn0196-9722
dc.identifier.issn1087-6553
dc.identifier.urihttp://hdl.handle.net/10084/101261
dc.description.abstractIn this article, we introduce a novel method for spam detection based on a combination of Bayesian filtering, signature trees, and data compression–based similarity. Bayesian filtering is one of the most popular and most efficient algorithms for dealing with spam detection. The problem with Bayesian filtering is that it is unable to classify any e-mail without doubt and sometimes spam e-mails are classified as regular e-mails. This novel method sorts out this problem by using signature trees and data compression–based similarity. The main result of this article is an up to 99% improvement in spam detection precision using this novel method.cs
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofseriesCybernetics and Systemscs
dc.relation.urihttp://dx.doi.org/10.1080/01969722.2013.805110cs
dc.subjectBayesian filtercs
dc.subjectdata compressioncs
dc.subjecte-mailcs
dc.subjectS-treecs
dc.subjectsignaturescs
dc.subjectspamcs
dc.titleSpam detection using data compression and signaturescs
dc.typearticlecs
dc.identifier.doi10.1080/01969722.2013.805110
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume44cs
dc.description.issue6-7cs
dc.description.lastpage549cs
dc.description.firstpage533cs
dc.identifier.wos000323877900005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam