dc.contributor.author | Prokop, Lukáš | |
dc.contributor.author | Mišák, Stanislav | |
dc.contributor.author | Snášel, Václav | |
dc.contributor.author | Platoš, Jan | |
dc.contributor.author | Krömer, Pavel | |
dc.date.accessioned | 2013-11-27T13:52:52Z | |
dc.date.available | 2013-11-27T13:52:52Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Neural Network World. 2013, vol. 23, issue 4, p. 321-338. | cs |
dc.identifier.issn | 1210-0552 | |
dc.identifier.uri | http://hdl.handle.net/10084/101285 | |
dc.description.abstract | This article presents an application of evolutionary fuzzy rules to the modeling and prediction of power output of a real-world Photovoltaic Power Plant (PVPP). The method is compared to artificial neural networks and support vector regression that were also used to build predictors in order to analyse a time-series like data describing the production of the PVPP. The models of the PVPP are created using different supervised machine learning methods in order to forecast the short-term output of the power plant and compare the accuracy of the prediction. | cs |
dc.language.iso | en | cs |
dc.publisher | České vysoké učení technické v Praze. Fakulta dopravní | cs |
dc.relation.ispartofseries | Neural Network World | cs |
dc.title | Supervised learning of photovoltaic power plant output prediction models | cs |
dc.type | article | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 23 | cs |
dc.description.issue | 4 | cs |
dc.description.lastpage | 338 | cs |
dc.description.firstpage | 321 | cs |
dc.identifier.wos | 000325193300004 | |