Zobrazit minimální záznam

dc.contributor.authorProkop, Lukáš
dc.contributor.authorMišák, Stanislav
dc.contributor.authorSnášel, Václav
dc.contributor.authorPlatoš, Jan
dc.contributor.authorKrömer, Pavel
dc.date.accessioned2013-11-27T13:52:52Z
dc.date.available2013-11-27T13:52:52Z
dc.date.issued2013
dc.identifier.citationNeural Network World. 2013, vol. 23, issue 4, p. 321-338.cs
dc.identifier.issn1210-0552
dc.identifier.urihttp://hdl.handle.net/10084/101285
dc.description.abstractThis article presents an application of evolutionary fuzzy rules to the modeling and prediction of power output of a real-world Photovoltaic Power Plant (PVPP). The method is compared to artificial neural networks and support vector regression that were also used to build predictors in order to analyse a time-series like data describing the production of the PVPP. The models of the PVPP are created using different supervised machine learning methods in order to forecast the short-term output of the power plant and compare the accuracy of the prediction.cs
dc.language.isoencs
dc.publisherČeské vysoké učení technické v Praze. Fakulta dopravnícs
dc.relation.ispartofseriesNeural Network Worldcs
dc.titleSupervised learning of photovoltaic power plant output prediction modelscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.issue4cs
dc.description.lastpage338cs
dc.description.firstpage321cs
dc.identifier.wos000325193300004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam