Zobrazit minimální záznam

dc.contributor.authorDrobek, Jaroslav
dc.contributor.authorJokl, Luděk
dc.date.accessioned2014-02-05T09:22:33Z
dc.date.available2014-02-05T09:22:33Z
dc.date.issued2014
dc.identifier.citationJournal of Computational and Applied Mathematics. 2014, vol. 259, p. 216-225.cs
dc.identifier.issn0377-0427
dc.identifier.urihttp://hdl.handle.net/10084/101638
dc.description.abstractWithin the complex variable boundary element method, an approximate solution is determined by a Cauchy-type integral whose density is a piecewise linear function. Such an integral can be expressed by a linear combination of some functions that can be chosen in many ways. The choice influences properties of a linear system that arises by discretization of some boundary value problem. One choice is presented that allows to deduce some results about the system solvability. It is demonstrated on the Dirichlet problem.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Computational and Applied Mathematicscs
dc.relation.urihttp://dx.doi.org/10.1016/j.cam.2013.08.009cs
dc.rightsCopyright © 2013 Elsevier B.V. All rights reserved.cs
dc.subjectcomplex variable boundary element methodcs
dc.subjectapproximate solutioncs
dc.subjectDirichlet problemcs
dc.subjectCauchy-type integralcs
dc.subjectPiecewise linear functioncs
dc.subjectlinear system solvabilitycs
dc.titleOn solvability of linear systems generated by the complex variable boundary element methodcs
dc.typearticlecs
dc.identifier.doi10.1016/j.cam.2013.08.009
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume259cs
dc.description.lastpage225cs
dc.description.firstpage216cs
dc.identifier.wos000329376600022


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam