Zobrazit minimální záznam

dc.contributor.authorGomez, Jose
dc.contributor.authorKovář, Petr
dc.date.accessioned2014-02-28T12:59:19Z
dc.date.available2014-02-28T12:59:19Z
dc.date.issued2014
dc.identifier.citationArs Combinatoria. 2014, vol. 113, p. 175-192.cs
dc.identifier.issn0381-7032
dc.identifier.urihttp://hdl.handle.net/10084/101731
dc.description.abstractLet G = (V, E) be a finite non-empty graph. A vertex-magic total labeling (VMTL) is a bijection lambda from V boolean OR E to the set of consecutive integers {1, 2,..., vertical bar V vertical bar + vertical bar E vertical bar} with the property that for every v is an element of V, lambda(v) + Sigma w is an element of N(v) lambda(vw) = h, for some constant h. Such a labeling is called super if the vertex labels are 1, 2,..., vertical bar V vertical bar There are some results known about super VMTL of kG only when the graph G has a super VMTL. In this paper we focus on the case when G is the complete graph K-n. It was shown that a super VMTL of kK(n) exists for n odd and any k, for 4 < n equivalent to 0 (mod 4) and any k, and for n = 4 and k even. We continue the study and examine the graph kK(n) for n equivalent to 2 (mod 4). Let n = 4l + 2 for a positive integer l. The graph kK(4l+2) does not admit a super VMTL for k odd. We give a large number of super VMTLs of kK(4l+2) for any even k based on super VMTL of 4K(2l+1).cs
dc.language.isoencs
dc.publisherThe Charles Babbage Research Centrecs
dc.relation.ispartofseriesArs Combinatoriacs
dc.subjectcomplete graphcs
dc.subjectmagic graphcs
dc.subjectsuper vertex-magic total labelingcs
dc.titleOn super vertex-magic total labeling of the disjoint union of k copies of K-ncs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume113cs
dc.description.lastpage192cs
dc.description.firstpage175cs
dc.identifier.wos000329883500015


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam