Zobrazit minimální záznam

dc.contributor.authorJackowski, Konrad
dc.contributor.authorKrawczyk, Bartosz
dc.contributor.authorWoźniak, Michał
dc.date.accessioned2014-05-13T14:02:17Z
dc.date.available2014-05-13T14:02:17Z
dc.date.issued2014
dc.identifier.citationInternational Journal of Neural Systems. 2014, vol. 24, issue 3, article no. 1430007.cs
dc.identifier.issn0129-0657
dc.identifier.issn1793-6462
dc.identifier.urihttp://hdl.handle.net/10084/101789
dc.description.abstractCurrently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues and propose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide range of computer experiments that show that AdaSS+ can outperform the original method and several reference classifiers.cs
dc.language.isoencs
dc.publisherWorld Scientific Publishingcs
dc.relation.ispartofseriesInternational Journal of Neural Systemscs
dc.relation.urihttps://doi.org/10.1142/S0129065714300071cs
dc.rightsCopyright© 2014 World Scientific Publishing Co. All rights reserved.cs
dc.subjectmachine learningcs
dc.subjectpattern classificationcs
dc.subjectclassifier ensemblecs
dc.subjectCombined classifiercs
dc.subjecthybrid algorithmcs
dc.subjectevolutionary algorithmcs
dc.titleImproved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioningcs
dc.typearticlecs
dc.identifier.doi10.1142/S0129065714300071
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume24cs
dc.description.issue3cs
dc.description.firstpageart. no. 1430007cs
dc.identifier.wos000332040900001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam