Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorBrzobohatý, Tomáš
dc.contributor.authorHorák, David
dc.contributor.authorKozubek, Tomáš
dc.contributor.authorVodstrčil, Petr
dc.date.accessioned2014-05-20T07:39:00Z
dc.date.available2014-05-20T07:39:00Z
dc.date.issued2014
dc.identifier.citationComputers & Mathematics with Applications. 2014, vol. 67, issue 3, p. 515-526.cs
dc.identifier.issn0898-1221
dc.identifier.issn1873-7668
dc.identifier.urihttp://hdl.handle.net/10084/101849
dc.description.abstractNew convergence results for a variant of the inexact augmented Lagrangian algorithm SMALBE [Z. Dostál, An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum, Computing 78 (2006) 311–328] for the solution of strictly convex bound and equality constrained quadratic programming problems are presented. The algorithm SMALBE-M presented here uses a fixed regularization parameter and controls the precision of the solution of auxiliary bound constrained problems by a multiple of the norm of violation of the equality constraints and a constant which is updated in order to enforce the increase of Lagrangian function. A nice feature of SMALBE-M is its capability to find an approximate solution of important classes of problems in a number of iterations that is independent of the conditioning of the equality constraints. Here we prove the R-linear rate of convergence of the outer loop of SMALBE-M for any positive regularization parameter after the strong active constraints of the solution are identified. The theoretical results are illustrated by solving two benchmarks, including the contact problem of elasticity discretized by two million of nodal variables. The numerical experiments indicate that the inexact solution of auxiliary problems in the inner loop results in a very small increase of the number of outer iterations as compared with the exact algorithm. The results do not assume independent equality constraints and remain valid when the solution is dual degenerate.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputers & Mathematics with Applicationscs
dc.relation.urihttp://dx.doi.org/10.1016/j.camwa.2013.11.009cs
dc.rightsCopyright © 2013 Elsevier Ltd. All rights reserved.cs
dc.subjectquadratic programmingcs
dc.subjectbound and equality constraintscs
dc.subjectinexact augmented lagrangianscs
dc.subjectadaptive precision controlcs
dc.subjecterror boundscs
dc.subjectcontact problemcs
dc.titleOn R-linear convergence of semi-monotonic inexact augmented Lagrangians for bound and equality constrained quadratic programming problems with applicationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.camwa.2013.11.009
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume67cs
dc.description.issue3cs
dc.description.lastpage526cs
dc.description.firstpage515cs
dc.identifier.wos000331506500003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam