Zobrazit minimální záznam

dc.contributor.authorFrolov, Alexander A.
dc.contributor.authorHúsek, Dušan
dc.contributor.authorPolyakov, Pavel Y.
dc.date.accessioned2014-05-20T08:53:23Z
dc.date.available2014-05-20T08:53:23Z
dc.date.issued2014
dc.identifier.citationNeurocomputing. 2014, vol. 130, p. 83-97.cs
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.urihttp://hdl.handle.net/10084/101854
dc.description.abstractMethods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine learning researchers. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. In the present study, we propose a general generative model of binary data for Boolean Factor Analysis and introduce two new Expectation-Maximization Boolean Factor Analysis algorithms which maximize the likelihood of a Boolean Factor Analysis solution. To show the maturity of our solutions we propose an informational measure of Boolean Factor Analysis efficiency. Using the so-called bars problem benchmark, we compare the efficiencies of the proposed algorithms to that of Dendritic Inhibition Neural Network, Maximal Causes Analysis, and Boolean Matrix Factorization. Last mentioned methods were taken as related methods as they are supposed to be the most efficient in bars problem benchmark. Then we discuss the peculiarities of the two methods we proposed and the three related methods in performing Boolean Factor Analysis.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNeurocomputingcs
dc.relation.urihttp://dx.doi.org/10.1016/j.neucom.2012.02.055cs
dc.rightsCopyright © 2013 Elsevier B.V. All rights reserved.cs
dc.subjectBoolean factor analysiscs
dc.subjectbinary matrix factorizationcs
dc.subjectneural networkscs
dc.subjectbinary data modelcs
dc.subjectdimension reductioncs
dc.subjectbars problemcs
dc.titleTwo expectation-maximization algorithms for Boolean factor analysiscs
dc.typearticlecs
dc.identifier.doi10.1016/j.neucom.2012.02.055
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume130cs
dc.description.lastpage97cs
dc.description.firstpage83cs
dc.identifier.wos000333233200012


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam