Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorHorák, David
dc.contributor.authorVodstrčil, Petr
dc.date.accessioned2014-08-26T12:44:26Z
dc.date.available2014-08-26T12:44:26Z
dc.date.issued2014
dc.identifier.citationComputational Optimization and Applications. 2014, vol. 58, issue 1, p. 87-103.cs
dc.identifier.issn0926-6003
dc.identifier.issn1573-2894
dc.identifier.urihttp://hdl.handle.net/10084/105772
dc.description.abstractA variant of the inexact augmented Lagrangian algorithm called SMALE (Dostál in Comput. Optim. Appl. 38:47–59, 2007) for the solution of saddle point problems with a positive definite left upper block is studied. The algorithm SMALE-M presented here uses a fixed regularization parameter and controls the precision of the solution of auxiliary unconstrained problems by a multiple of the norm of the residual of the second block equation and a constant which is updated in order to enforce increase of the Lagrangian function. A nice feature of SMALE-M inherited from SMALE is its capability to find an approximate solution in a number of iterations that is bounded in terms of the extreme eigenvalues of the left upper block and does not depend on the off-diagonal blocks. Here we prove the R-linear rate of convergence of the outer loop of SMALE-M for any regularization parameter. The theory is illustrated by numerical experiments.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesComputational Optimization and Applicationscs
dc.relation.urihttps://doi.org/10.1007/s10589-013-9611-2cs
dc.rights© Springer Science+Business Media New York 2013cs
dc.titleOn R-linear convergence of semi-monotonic inexact augmented Lagrangians for saddle point problemscs
dc.typearticlecs
dc.identifier.doi10.1007/s10589-013-9611-2
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume58cs
dc.description.issue1cs
dc.description.lastpage103cs
dc.description.firstpage87cs
dc.identifier.wos000334524000003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam