Zobrazit minimální záznam

dc.contributor.authorKang, Jun
dc.contributor.authorMeng, Wenjun
dc.contributor.authorAbraham, Ajith
dc.contributor.authorLiu, Hongbo
dc.date.accessioned2015-01-08T13:56:39Z
dc.date.available2015-01-08T13:56:39Z
dc.date.issued2014
dc.identifier.citationNeurocomputing. 2014, vol. 135, p. 79-85.cs
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.urihttp://hdl.handle.net/10084/106261
dc.description.abstractUsually it is difficult to solve the control problem of a complex nonlinear system. In this paper, we present an effective control method based on adaptive PID neural network and particle swarm optimization (PSO) algorithm. PSO algorithm is introduced to initialize the neural network for improving the convergent speed and preventing weights trapping into local optima. To adapt the initially uncertain and varying parameters in the control system, we introduce an improved gradient descent method to adjust the network parameters. The stability of our controller is analyzed according to the Lyapunov method. The simulation of complex nonlinear multiple-input and multiple-output (MIMO) system is presented with strong coupling. Empirical results illustrate that the proposed controller can obtain good precision with shorter time compared with the other considered methods.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNeurocomputingcs
dc.relation.urihttp://dx.doi.org/10.1016/j.neucom.2013.03.065cs
dc.titleAn adaptive PID neural network for complex nonlinear system controlcs
dc.typearticlecs
dc.identifier.doi10.1016/j.neucom.2013.03.065
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume135cs
dc.description.lastpage85cs
dc.description.firstpage79cs
dc.identifier.wos000335871200010


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam