Zobrazit minimální záznam

dc.contributor.authorZjavka, Ladislav
dc.contributor.authorSnášel, Václav
dc.date.accessioned2015-01-12T14:57:46Z
dc.date.available2015-01-12T14:57:46Z
dc.date.issued2014
dc.identifier.citationInformation Sciences. 2014, vol. 281, p. 462-477.cs
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.urihttp://hdl.handle.net/10084/106295
dc.description.abstractData relations can define general sum partial differential equations of a composite function additive derivative model. Time-series data observations can analogously describe an ordinary sum differential equation with time derivatives, which is possible to be solved using partial derivative term substitutions of time-dependent series. Differential polynomial neural network is a new type of neural network, which constructs and substitutes for an unknown general partial differential equation from data observations, developed by the author. It generates sum series of convergent partial polynomial derivative terms, which can describe an unknown complex function time-series. This type of non-linear regression decomposes a system model, described by the general differential equation, into many partial low order derivative specifications of selected relative sum terms. Common soft-computing techniques in general can apply input variables of only absolute interval values of a specific data range. The character of relative data allows processing a wider range of test interval values than defined by a training set. The characteristics of the composite sum differential equation solutions can facilitate a much greater variety of model forms than is allowed using standard soft computing methods. Recurrent neural network proved to form simple solid time-series models, most of which it is possible to describe using ordinary differential equations, so the comparisons were done.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInformation Sciencescs
dc.relation.urihttp://dx.doi.org/10.1016/j.ins.2014.05.036cs
dc.titleConstructing ordinary sum differential equations using polynomial networkscs
dc.typearticlecs
dc.identifier.doi10.1016/j.ins.2014.05.036
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume281cs
dc.description.lastpage477cs
dc.description.firstpage462cs
dc.identifier.wos000340315600031


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam